Project description:POWV isolate from Long Island (POWV-LI-9) is released basolaterally from humban brain microvascular endothelial cells (hBMECs) and infects primary human brain vascular pericutes (hBVPs).
Project description:POWV isolate from Long Island (POWV-LI-9) is released basolaterally from humban brain microvascular endothelial cells (hBMECs) and infects primary human brain vascular pericutes (hBVPs).
Project description:Functional and structural dysfunction of the blood brain barrier (BBB) leads to severe alterations in brain physiology and is believed to trigger neurodegeneration. To investigate the molecular mechanisms driving the BBB dysfunction, very few human BBB cell culture models are available; of which, the human microvascular endothelial cell line (hCMEC/D3) is the most widely used. Thus far, array-based approaches or targeted seqeuncing based approaches have been employed to characterize the gene expression of the hCMEC/D3 model. However,The goal of this study is to perform deep transcriptomic sequencing of the BBB cell line and obtain features like gene expression, expressed single nucleotide variants, alternate splice forms, circular RNAs, long non-coding RNAs and micro RNAs. We have developed blood brain barriers transcriptomics landscape using RNA sequencing and micro RNA seqeuncing data obtained from replicates of hCMEC/D3 BBB cell line.
Project description:Functional and structural dysfunction of the blood brain barrier (BBB) leads to severe alterations in brain physiology and is believed to trigger neurodegeneration. To investigate the molecular mechanisms driving the BBB dysfunction, very few human BBB cell culture models are available;of which, the human microvascular endothelial cell line (hCMEC/D3) is the most widely used. Thus far, array-based approaches or targeted seqeuncing based approaches have been employed to characterize the gene expression of the hCMEC/D3 model. However,The goal of this study is to perform deep transcriptomic sequencing of the BBB cell line and obtain features like gene expression, expressed single nucleotide variants, alternate splice forms, circular RNAs, long non-coding RNAs and micro RNAs. We have developed blood brain barriers transcriptomics landscape using RNA and micro RNA sequencing data obtained from replicates of hCMEC/D3 BBB cell line.
Project description:Functional and structural dysfunction of the blood brain barrier (BBB) leads to severe alterations in brain physiology and is believed to trigger neurodegeneration. To investigate the molecular mechanisms driving the BBB dysfunction, very few human BBB cell culture models are available;of which, the human microvascular endothelial cell line (hCMEC/D3) is the most widely used. Thus far, array-based approaches or targeted seqeuncing based approaches have been employed to characterize the gene expression of the hCMEC/D3 model. However,The goal of this study is to perform deep transcriptomic sequencing of the BBB cell line and obtain features like gene expression, expressed single nucleotide variants, alternate splice forms, circular RNAs, long non-coding RNAs and micro RNAs.
Project description:Functional and structural dysfunction of the blood brain barrier (BBB) leads to severe alterations in brain physiology and is believed to trigger neurodegeneration. To investigate the molecular mechanisms driving the BBB dysfunction, very few human BBB cell culture models are available; of which, the human microvascular endothelial cell line (hCMEC/D3) is the most widely used. Thus far, array-based approaches or targeted seqeuncing based approaches have been employed to characterize the gene expression of the hCMEC/D3 model. However,The goal of this study is to perform deep transcriptomic sequencing of the BBB cell line and obtain features like gene expression, expressed single nucleotide variants, alternate splice forms, circular RNAs, long non-coding RNAs and micro RNAs.
Project description:Identification and Functional Analysis of Long Non-coding RNAs in Human Pulmonary Microvascular Endothelial Cells Subjected to Cyclic Stretch
Project description:The effect of Mycophenolic acid on primary isolated human dermal microvascular endothelial (HDMVEC) and fibroblast cells as well as human glioblastoma brain tumor cell line (U87).