Project description:Elimination of the helminth disease, river blindness, remains challenging due to ivermectin treatment-associated adverse reactions in loiasis co-infected patients. Here, we address a deficit in preclinical research tools for filarial translational research by developing Loa loa mouse infection models. We demonstrate that adult Loa loa worms in subcutaneous tissues, circulating microfilariae (mf) and presence of filarial biomarkers in sera occur following experimental infections of lymphopenic mice deficient in interleukin (IL)-2/7 gamma-chain signaling. A microfilaraemic infection model is also achievable, utilizing immune-competent or -deficient mice infused with purified Loa mf. Ivermectin but not benzimidazole treatments induce rapid decline (>90%) in parasitaemias in microfilaraemic mice. We identify up-regulation of inflammatory markers associated with allergic type-2 immune responses and eosinophilia post-ivermectin treatment. Thus, we provide validation of murine research models to identify loiasis biomarkers, to counter-screen candidate river blindness cures and to interrogate the inflammatory etiology of loiasis ivermectin-associated adverse reactions.
Project description:BackgroundThe diurnal periodicity of Loa loa microfilaraemia is well known but few studies have documented the short- and long-term stability of microfilarial density. It seems stable over time at the community level, but significant variations have been observed at the individual level.MethodsWe assessed the temporal variability of L. loa microfilaraemia at 5-day, 1-month and 16-month intervals and analyzed the influence of sex, age, level of microfilaraemia, temperatures and time of sampling on this variability.ResultsAt the community level, L. loa microfilaraemia is very stable over time at 5-day, 1-month and 16-month intervals (Pearson correlation coefficients of 0.92, 0.91 and 0.78, respectively, all three with P < 0.001). However, some individuals had significant variations of up to ± 50% of their initial microfilaraemia at 5-day (33.0%), 1-month (36.5%) and 16-month (62.6%) intervals, even in individuals with an initial microfilaraemia density > 20,000 mf/ml (7.7, 23.1 and 41.4%, respectively, for 5 days, 1 month and 16 months). We do not highlight any external factors that have a major impact on this variability.ConclusionAlthough at the community level, microfilaria density is very stable, we highlight some individuals with large variations in both the short and long term, which may have an important impact on onchocerciasis control campaigns and longitudinal studies evaluating the impact of an intervention on L. loa microfilaraemia.
Project description:BACKGROUND:Different immune mechanisms are capable of killing developmental stages of filarial nematodes and these mechanisms are also likely to vary between the primary and a challenge infection. However, the lack of a detailed analysis of cytokine, chemokine and immunoglobulin levels in human loiasis is still evident. Therefore, detailed analysis of immune responses induced by the different developmental stages of Loa loa in immune-competent BALB/c mice will aid in the characterization of distinct immune responses that are important for the immunity against loiasis. METHODS:Different developmental stages of L. loa were obtained from human peripheral blood (microfilariae, MF), the transmitting vector, Chrysops (larval stage 3, L3) and infected immune-deficient BALB/cRAG2?c-/- mice (L4, L5, adult worms). Groups of wildtype BALB/c mice were then injected with the isolated stages and after 42 days post-infection (pi), systemic cytokine, chemokine and immunoglobulin levels were determined. These were then compared to L. loa-specific responses from in vitro re-stimulated splenocytes from individual mice. All parameters were determined using Luminex technology. RESULTS:In a pilot study, BALB/c mice cleared the different life stages of L. loa within 42 days pi and systemic cytokine, chemokine and immunoglobulin levels were equal between infected and naive mice. Nevertheless, L. loa-specific re-stimulation of splenocytes from mice infected with L5, MF or adult worms led to induction of Th2, Th17 and chemokine secretion patterns. CONCLUSIONS:This study shows that although host immunity remains comparable to naive mice, clearance of L. loa life-cycle development stages can induce immune cell memory leading to cytokine, chemokine and immunoglobulins secretion patterns which might contribute to immunity and protection against reinfection.