Project description:We investigated whether dietary vitamin D supplementation can rescue the expression of genes that are dysregulated within the neocortex of Mecp2+/- mice, and whether vitamin D deficiency further exacerbates transcriptome disruptions in these mice. We found that dietary vitamin D modification has a profound impact on the transcriptome of the neocortex. We identified more than 200 differentially expressed genes whose expression is normalized with vitamin D supplementation, many of which are associated with neuronal morphology. Dietary vitamin D deficiency exacerbated the dysregulation of many of these genes in the Mecp2+/- cortex, but, strikingly, it normalized the expression of many other dysregulated genes, similar to the effect of supplementation.
Project description:Vitamin D, a fat-soluble vitamin, plays a critical role in calcium homeostasis, the immune system, and normal development. Many epidemiological cohort studies globally have found high prevalence rates of vitamin D deficiency and insufficiency, recognized as an important health issue that needs to be solved. In particular, reproductive age and pregnant women low in vitamin D status may confer risks of diseases like obesity on their offspring. While observational studies have suggested associations between prenatal vitamin D deficiency and metabolic phenotypes in offspring, not yet determined is whether prenatal vitamin D deficiency permanently alters the development of the liver, a major metabolic organ. We tested the histopathology and the transcriptomic profiles of livers from male C57BL/6J mice exposed to prenatal vitamin D deficiency through a maternal dietary intervention model. We found that prenatal vitamin D deficiency increases the prevalence of histopathological changes in the liver, and alters its gene expression profile. Cell subtype proportion analysis showed that the liver of prenatal vitamin D deficiency alters non-parenchymal cells of the liver, specifically macrophages, a subset of endothelial cells, and dendritic cells. Our results indicate the long-term memory of prenatal vitamin D deficiency exposure in the adult liver, a potential contributor to offspring health risks.
Project description:Dietary flavonoids are supposed to be protective against cardiovascular diseases (CVD). Elevated circulating lipid levels and hepatic lipid accumulation are known risk factors for CVD. We investigated the effects and underlying molecular mechanisms of the flavonoid quercetin on hepatic lipid metabolism in mice with diet induced body weight gain and hepatic lipid accumulation. Adult male mice received a high-fat diet without or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Body weight gain was 29% lower in quercetin-fed mice (p<0.01), while the energy intake was not significantly different. Quercetin supplementation reduced hepatic lipid accumulation with 71% (p<0.05). 1H nuclear magnetic resonance serum lipid profiling revealed that the supplementation lowered serum lipids (p<0.0001). Global gene expression profiling of liver showed that key target genes of the transcription factor Constitutive androstane receptor (Car; official symbol Nr1i3) were regulated, in particular Cytochrome P450 2b (Cyp2b) genes. Quercetin can decrease high-fat diet induced body weight gain, hepatic lipid accumulation and serum lipid levels, which might be explained by the regulation of Cytochrome P450 genes under transcriptional control of CAR, an effect which is likely dependent on dietary background.
Project description:The origins of congenital heart diseases, the most common congenital diseases are still largely unknown. Environmental factors are now emerging as major causes of these diseases. Vitamin D deficiency has become a public health burden, notably for childbearing age, pregnant and breastfeeding women. Since maternal 25-hydroxyvitamin D (25(OH)D) determined fetal and neonatal 25(OH)D status, foetuses exposed to insufficient levels of vitamin D, may feature developmental defects.Herein, we investigated the effects of maternal vitamin D deficiency on cardiovascular defects in early and later life of offsprings as well as the molecular mechanisms underlying vitamin D effect.Eight weeks before and during pregnancy, C57BL/6JRj female mice received a sufficient or vitamin D deficient diet ((1.0 IU/g in control vs 0.0 IU/g in Vitamin D Deficient (VDD) group). E16.5 Embryos of maternal VDD diet featured hypertrophic heart revealed by a thicker left ventricular (LV) wall and septum. RNAseq analysis of LV revealed 1555 transcripts differentially expressed in the VDD group and among them cardiac transcription factors and constitutive cardiac genes (tbx5, gata4, myl2). Anti-Vitamin D receptor (VDR) Chip-seq from chromatin of E16.5 LV uncovered different targeting of tbx5 and tbx3 loci by VDR in the VDD vs control embryos. Anti-CTCF ChIP-loop experiments focusing on the Tbx3 and Tbx5 loci uncovered a change in the Topology Associated Domains associated with these loci. Herein, we investigated the effects of maternal vitamin D deficiency on cardiovascular defects in early and later life of offsprings as well as the molecular mechanisms underlying vitamin D effect.Eight weeks before and during pregnancy, C57BL/6JRj female mice received a sufficient or vitamin D deficient diet ((1.0 IU/g in control vs 0.0 IU/g in Vitamin D Deficient (VDD) group). E16.5 Embryos of maternal VDD diet featured hypertrophic heart revealed by a thicker left ventricular (LV) wall and septum. RNAseq analysis of LV revealed 1555 transcripts differentially expressed in the VDD group and among them cardiac transcription factors and constitutive cardiac genes (tbx5, gata4, myl2). Anti-Vitamin D receptor (VDR) Chip-seq from chromatin of E16.5 LV uncovered different targeting of tbx5 and tbx3 loci by VDR in the VDD vs control embryos. Anti-CTCF ChIP-loop experiments focusing on the Tbx3 and Tbx5 loci uncovered a change in the Topology Associated Domains associated with these loci.
Project description:Dietary flavonoids are supposed to be protective against cardiovascular diseases (CVD). Elevated circulating lipid levels and hepatic lipid accumulation are known risk factors for CVD. We investigated the effects and underlying molecular mechanisms of the flavonoid quercetin on hepatic lipid metabolism in mice with diet induced body weight gain and hepatic lipid accumulation. Adult male mice received a high-fat diet without or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Body weight gain was 29% lower in quercetin-fed mice (p<0.01), while the energy intake was not significantly different. Quercetin supplementation reduced hepatic lipid accumulation with 71% (p<0.05). 1H nuclear magnetic resonance serum lipid profiling revealed that the supplementation lowered serum lipids (p<0.0001). Global gene expression profiling of liver showed that key target genes of the transcription factor Constitutive androstane receptor (Car; official symbol Nr1i3) were regulated, in particular Cytochrome P450 2b (Cyp2b) genes. Quercetin can decrease high-fat diet induced body weight gain, hepatic lipid accumulation and serum lipid levels, which might be explained by the regulation of Cytochrome P450 genes under transcriptional control of CAR, an effect which is likely dependent on dietary background. Liver samples were obtained from 24 C57BL/6J male adult mice. All mice started with a three week adaptation phase, in which they were fed a normal-fat diet. During the intervention of 12 weeks, the mice received a high-fat diet without (HF) or with supplementation of 0.33% (w/w) quercetin (HF-Q). Based on visual inspection, three arrays lacked homogenous hybridization and were therefore excluded.
Project description:Transcriptomic analysis of lungs from newborn rats born to vitamin D adequate and vitamin D deficient mothers Vitamin D deficiency during pregnancy is common and is related to several maternal and fetal morbidities. Past studies suggest that vitamin D plays a role in normal lung development and we have shown that vitamin D regulates lung alveolar and vascular growth and preserves lung structure in experimental bronchopulmonary dysplasia (BPD) through improved pro-angiogeneic signaling. In addition, maternal vitamin D deficiency causes abnormal airway, alveolar, and vascular growth, as well as impaired lung function and airway hyper-reactivity in newborn rats. However, the mechanisms responsible for these physiologic effects are unknown. To gain insight into the role that maternal vitamin D status has on fetal lung development we used an unbiased transcriptomic approach to identify pathways altered in the lungs of offspring from vitamin D deficient dams.
Project description:Deficiency of mitochondrial sulfur dioxygenase (ETHE1) causes the severe metabolic disorder ethylmalonic encephalopathy, which is characterized by early-onset encephalopathy and defective cytochrome C oxidase because of hydrogen sulfide accumulation. Although the severe systemic consequences of the disease are becoming clear, the molecular effects are not well defined. Therefore, for further elucidating the effects of ETHE1-deficiency, we performed a large scale quantitative proteomics study on liver tissue from ETHE1-deficient mice. Our results demonstrated a clear link between ETHE1-deficiency and redox active proteins, as reflected by down-regulation of several proteins related to oxidation-reduction, such as different dehydrogenases and cytochrome P450 (CYP450) members. Furthermore, the protein data indicated impact of the ETHE1-deficiency on metabolic reprogramming through up-regulation of glycolytic enzymes and by altering several heterogeneous ribonucleoproteins (hnRNPs), indicating novel link between ETHE1 and gene expression. We also found increase in total protein acetylation level, pointing out the link between ETHE1 and acetylation, which is likely controlled by both redox state and cellular metabolites. These findings are relevant for understanding the complexity of the disease and may shed light on important functions influenced by ETHE1 deficiency and by the concomitant increase in the gaseous mediator hydrogen sulfide.
Project description:Deficiency of mitochondrial sulfur dioxygenase (ETHE1) causes the severe metabolic disorder ethylmalonic encephalopathy, which is characterized by early-onset encephalopathy and defective cytochrome C oxidase because of hydrogen sulfide accumulation. Although the severe systemic consequences of the disease are becoming clear, the molecular effects are not well defined. Therefore, for further elucidating the effects of ETHE1-deficiency, we performed a large scale quantitative proteomics study on liver tissue from ETHE1-deficient mice. Our results demonstrated a clear link between ETHE1-deficiency and redox active proteins, as reflected by down-regulation of several proteins related to oxidation-reduction, such as different dehydrogenases and cytochrome P450 (CYP450) members. Furthermore, the protein data indicated impact of the ETHE1-deficiency on metabolic reprogramming through up-regulation of glycolytic enzymes and by altering several heterogeneous ribonucleoproteins (hnRNPs), indicating novel link between ETHE1 and gene expression. We also found increase in total protein acetylation level, pointing out the link between ETHE1 and acetylation, which is likely controlled by both redox state and cellular metabolites. These findings are relevant for understanding the complexity of the disease and may shed light on important functions influenced by ETHE1 deficiency and by the concomitant increase in the gaseous mediator hydrogen sulfide.