Project description:Transgenes containing a fragment of I transposon represent a powerful model of piRNA cluster de novo formation in the Drosophila germline. We revealed that the same transgenes located at different genomic loci form piRNA clusters with various capacity of small RNA production. Transgenic piRNA clusters are not established in piRNA pathway mutants. However, in wild-type context, the endogenous ancestral I-related piRNAs are sufficient to heterochromatinize and convert the I-containing transgenes into piRNA-producing loci. Here, we address how the quantitative level of piRNAs influences the heterochromatinization and piRNA production. We show that neither the piRNAs mediated by active I-element copies nor inheritance of abundant maternal I-derived piRNAs enable to stimulate additional changes of transgenes chromatin state or piRNA production from them. Therefore, chromatin changes and piRNA production are initiated by a minimum threshold level of complementary piRNAs suggesting a selective advantage of prompt cell response to the lowest level of piRNAs. Noteworthy, the weak piRNA clusters do not transform into strong ones after being targeted by a larger amount of I-specific piRNAs, indicating the importance of the genomic context for piRNA cluster establishment. Analysis of ovarian transcription profiles suggests that regions facilitating convergent transcription favor formation of transgenic piRNA clusters .
Project description:Transposons evolve rapidly and can mobilize and trigger genetic instability. piRNAs silence these genome pathogens, but it is unclear how the piRNA pathway adapts to new transposons. In Drosophila piRNAs, encoded by heterochromatic clusters are maternally deposited in the embryo. Paternally inherited P-element transposons thus escape silencing and trigger a genetic instability and sterility. We show that this syndrome, termed P-M hybrid dysgenesis, also disrupts the piRNA biogenesis machinery and activates resident transposons. As dysgenic hybrids age, however, fertility is restored, P-elements are silenced, and P-element piRNAs are produced de novo. In addition, the piRNA biogenesis machinery is restored and resident elements are silenced. Significantly, new resident transposons insertions accumulate in piRNA clusters, and these new insertions are transmitted to progeny with high fidelity, produce novel piRNAs, and are associated with reduced transposition. P-M hybrid dysgenesis thus leads to heritable changes in chromosome structure that appear to enhance transposon silencing. 3 replicates of each sample (Har 2-4 days, w1 x Har 2-4 days, w1 x Har 21 days), total RNA samples hybridized to tiling array.
Project description:Transposons evolve rapidly and can mobilize and trigger genetic instability. piRNAs silence these genome pathogens, but it is unclear how the piRNA pathway adapts to new transposons. In Drosophila piRNAs, encoded by heterochromatic clusters are maternally deposited in the embryo. Paternally inherited P-element transposons thus escape silencing and trigger a genetic instability and sterility. We show that this syndrome, termed P-M hybrid dysgenesis, also disrupts the piRNA biogenesis machinery and activates resident transposons. As dysgenic hybrids age, however, fertility is restored, P-elements are silenced, and P-element piRNAs are produced de novo. In addition, the piRNA biogenesis machinery is restored and resident elements are silenced. Significantly, new resident transposons insertions accumulate in piRNA clusters, and these new insertions are transmitted to progeny with high fidelity, produce novel piRNAs, and are associated with reduced transposition. P-M hybrid dysgenesis thus leads to heritable changes in chromosome structure that appear to enhance transposon silencing.
Project description:Expression of transposable elements in the germline is controlled by Piwi-interacting (pi) RNAs produced by genomic loci termed piRNA clusters and associated with Rhino, a Heterochromatin Protein 1 (HP1) homolog. Previously, we have shown that transgenes containing a fragment of the I retrotransposon form de novo piRNA clusters in the Drosophila germline providing suppression of I-element activity. We noted that identical transgenes located in different genomic sites vary considerably in piRNA production and classified them as “strong” and “weak” piRNA clusters. Here, we investigated what chromatin and transcriptional changes occur at the transgene insertion sites after their conversion into piRNA clusters. We found that the formation of a transgenic piRNA cluster is accompanied by activation of transcription from both genomic strands that likely initiates at multiple random sites. The chromatin of all transgene-associated piRNA clusters contain high levels of trimethylated lysine 9 of histone H3 (H3K9me3) and HP1a, whereas Rhino binding is considerably higher at the strong clusters. None of these chromatin marks was revealed at the “empty” sites before transgene insertion. Finally, we have shown that in the nucleus of polyploid nurse cells, the formation of a piRNA cluster at a given transgenic genomic copy works according to an “all– or– nothing” model: either there is high Rhino enrichment or there is no association with Rhino at all. As a result, genomic copies of a weak piRNA transgenic cluster show a mosaic association with Rhino foci, while the majority of strong transgene copies associate with Rhino and are hence involved in piRNA production.
Project description:Argonaute proteins of the PIWI-clade, complexed with PIWI-interacting RNAs (piRNAs), protect the animal germline genome by silencing transposable elements. One of the leading experimental systems for studying piRNA biology is the Drosophila melanogaster ovary. In addition to classical mutagenesis, transgenic RNA interference (RNAi), which enables tissue-specific silencing of gene expression, plays a central role in piRNA research. Here, we establish a versatile toolkit focused on piRNA biology that integrates transgenic RNAi in the germline, GFP-marker lines for key proteins of the piRNA pathway, and reporter transgenes to establish genetic hierarchies. We compare constitutive, pan-germline RNAi with an equally potent transgenic RNAi system that is activated only upon germ cell cyst formation. Stage specific RNAi allows investigating the role of genes essential for cell survival (e.g. nuclear RNA export or the SUMOylation pathways) in piRNA-dependent and independent transposon silencing. Our work forms the basis for an expandable genetic toolkit available from the Vienna Drosophila Resource Center.