Project description:Proteogenomics is a research field where proteome data is used to improve gene annotation. To achieve this, customized protein databases are constructed to match proteomic data. We perform a proteogenomic analysis using N-terminal COFRADIC data in order to identify novel translational initiation start sites. We use a multistage search strategy where spectra that remained unidentified after searching the Arabidopsis proteome are used for our proteogenomic analysis. Here, the unidentified spectra were searched against a customized N-terminal peptide library derived from a six-frame translation of the Arabidopsis (Arabidopsis thaliana) genome as well as Augustus predicted gene models.
Project description:Proteogenomics is an emerging research field yet lacking a standard method of analysis. In this article, we demonstrate the strength of proteogenomic analysis specific for N-terminal data that aims at the discovery of novel translational start sites. In summary, unidentified spectra were matched to a specific N-terminal peptide library encompassing all theoretical protein N-termini encoded in the genome. Gene prediction suggested 81 protein-coding models, of which several alternative proteoforms with unannotated protein starts. Next to the proteomic data, complementary ribosome footprinting data was generated from Arabidopsis thaliana cell cultures. Translation initiation site mapping by the ribosome footprinting data provided orthogonal evidence for 14 novel peptides identified by our proteogenomics pipeline.
Project description:To understand the impact of alternative translation initiation on a proteome, we performed the first study on protein turnover using positional proteomics and ribosome profiling to distinguish between N-terminal proteoforms of individual genes. Overall, we monitored the stability of 1,941 human N-terminal proteoforms, including 147 N-terminal proteoform pairs that originate from alternative translation initiation, alternative splicing or incomplete processing of the initiator methionine. Ribosome profiling of lactimidomycin and cycloheximide treated human Jurkat T-lymphocytes
Project description:ATP-Binding Cassette E (ABCE) proteins dissociate cytoplasmic ribosomes after translation terminates, and contribute to ribosome recycling, thus linking translation termination to initiation. This function has been demonstrated to be essential in animals, fungi, and archaea, but remains unexplored in plants. In most species, ABCE is encoded by a single-copy gene; by contrast, Arabidopsis thaliana has two ABCE paralogs, of which ABCE2 seems to conserve the ancestral function. We isolated apiculata7-1 (api7-1), the first viable, hypomorphic allele of ABCE2, which has a pleiotropic morphological phenotype reminiscent of mutations affecting ribosome biogenesis factors and ribosomal proteins. We also studied api7-2, a null, recessive lethal allele of ABCE2. Co-immunoprecipitation experiments showed that ABCE2 physically interacts with components of the translation machinery. An RNA-seq study of the api7-1 mutant showed increased responses to iron and sulfur starvation. We also found increased transcript levels of genes related to auxin signaling and metabolism. Our results support for the first time a conserved role for ABCE proteins in translation in plants, as previously shown for the animal, fungal, and archaeal lineages. In Arabidopsis, the ABCE2 protein seems important for general growth and vascular development, likely due to an indirect effect through auxin metabolism.
Project description:To understand the impact of alternative translation initiation on a proteome, we performed the first study on protein turnover using positional proteomics and ribosome profiling to distinguish between N-terminal proteoforms of individual genes. Overall, we monitored the stability of 1,941 human N-terminal proteoforms, including 147 N-terminal proteoform pairs that originate from alternative translation initiation, alternative splicing or incomplete processing of the initiator methionine.
Project description:ATP-Binding Cassette E (ABCE) proteins dissociate cytoplasmic ribosomes after translation terminates, and contribute to ribosome recycling, thus linking translation termination to initiation. This function has been demonstrated to be essential in animals, fungi, and archaea, but remains unexplored in plants. In most species, ABCE is encoded by a single-copy gene; by contrast, Arabidopsis thaliana has two ABCE paralogs, of which ABCE2 seems to conserve the ancestral function. We isolated apiculata7-1 (api7-1), the first viable, hypomorphic allele of ABCE2, which has a pleiotropic morphological phenotype reminiscent of mutations affecting ribosome biogenesis factors and ribosomal proteins. We also studied api7-2, a null, recessive lethal allele of ABCE2. Co-immunoprecipitation experiments showed that ABCE2 physically interacts with components of the translation machinery. An RNA-seq study of the api7-1 mutant showed increased responses to iron and sulfur starvation. We also found increased transcript levels of genes related to auxin signaling and metabolism. Our results support for the first time a conserved role for ABCE proteins in translation in plants, as previously shown for the animal, fungal, and archaeal lineages. In Arabidopsis, the ABCE2 protein seems important for general growth and vascular development, likely due to an indirect effect through auxin metabolism.
Project description:Using acRIP-seq, we present transcriptome-wide atlases of ac4C in Arabidopsis thaliana and Oryza sativa. Analysis of ac4C distribution reveals ac4C is enriched near translation start sites in rice while near translation start sites and end sites in Arabidopsis. Further analysis shows ac4C contributes to RNA stability, splicing and translation. We then performed NaCNBH3 treatment and RNA-seq to measure C to T mutation and RNC-seq to measure translation efficiency in Arabidopsis.
Project description:Quantitative study of the N-terminal acetylome variations in Arabidopsis thaliana, looking at the effect of a N-acetyltransferase KO.