Project description:Calcified aortic valve leaflets (CAVs) were explanted from patients with severe aortic valve stenosis undergoing aortic valve replacement at the Department of Cardiovascular Surgery, Union Hospital, affiliated to Tongji Medical College. Control non-calcified aortic valves with normal echocardiographic analyses were obtained during heart transplant procedures. RNA was extracted from valve leaflets and gene expression evaluated using the Arraystar Human mRNA Array. This study aimed to perform the expression analysis of mRNA on human aortic valves.
Project description:The role of long noncoding RNAs (lncRNAs) in calcific aortic valve disease (CAVD) remains largely elusive. This study aims to report a novel therapeutic lncRNA, SNHG3, and elucidate its role in CAVD. Based on high-throughput transcriptomic sequencing of human aortic valves, SNHG3 is among the most highly expressed lncRNAs in CAVD. Furthermore, SNHG3 upregulation is verified in human calcified aortic valves, osteoblastic human aortic valve interstitial cells (hVICs), and aortic valve tissues in CAVD mice. Moreover, knockdown of SNHG3 with antisense oligonucleotide markedly ameliorates aortic valve calcification in high cholesterol diet-treated ApoE-/- mice, as evidenced by reduced calcium deposition in the aortic valve leaflets, improved echocardiographic parameters, and decreased osteogenic differentiation markers (RUNX2, osteopontin, and osteocalcin) in aortic valves. Consistent with these in vivo findings, SNHG3 overexpression aggravates the calcification of hVICs, while knockdown of SNHG3 alleviates the process of differential calcification. Transcriptomics sequencing, gene set enrichment analyses, RNA-pull down, RNA immunoprecipitation and chromatin immunoprecipitation-qPCR show that SNHG3 physically interacts with polycomb repressive complex 2 to suppress the H3K27 tri-methylation BMP2 locus, which in turn activates BMP2 expression and signaling pathways. Taken together, SNHG3 promotes aortic valve calcification by upregulating BMP2, which might be a novel therapeutic target in human CAVD.
Project description:The objective of this study was to identify genes differentially expressed between calcified bicuspid aortic valves (BAV) and tricuspid valves with (TAVc) and without (TAVn) aortic valve stenosis. Ten human BAV and nine TAVc were collected from male who underwent primary aortic valve replacement. Eight TAVn were obtained from male who underwent heart transplantation. mRNA levels were measured using Illumina HumanHT-12 v4 Expression BeadChip and compared between valve groups.
Project description:Introduction: Renal failure is associated with aortic valve calcification. Using our rat model of uraemia-induced reversible aortic valve calcification, we assessed the role of apoptosis and survival pathways in aortic valve calcification. We also explored the effects of raloxifene - an estrogen receptor modulator on valvular calcification. Methods: Gene array analysis was performed in aortic valves obtained from 3 groups of rats (n=7 each): calcified valves from rats fed with uremic diet -high-adenine (0.75%), high-phosphate diet (1.5%), valves after calcification resolution following diet cessation (reversibility) and control. In addition, four groups of rats (n=10 each) were used in order to evaluate the effect of raloxifene in aortic valve calcification: three groups as mentioned above and a fourth group fed with the uremic diet which also received daily raloxifene. Evaluation of these groups included imaging, histology and antigen expression analysis. Results: Gene array results showed that the majority of the expressed genes that were altered were from the diet group valves. Most apoptosis-related genes were changed in a pro-apoptotic direction in calcified valves. Apoptosis and decrease in several survival pathways were confirmed in calcified valves. Resolution of aortic valve calcification was accompanied by decreased apoptosis and upregulation of these ant-apoptotic pathways. Imaging and histology demonstrated that raloxifene significantly decreased aortic valve calcification. Conclusion: Downregulation of several survival pathways and apoptosis are involved in the pathogenesis of aortic valve calcification. The beneficial effect of raloxifene in valve calcification is related to apoptosis modulation. This novel observation is important for developing remedies for aortic valve calcification in patients with renal failure. Introduction: Renal failure is associated with aortic valve calcification. Using our rat model of uraemia-induced reversible aortic valve calcification, we assessed the role of apoptosis and survival pathways in aortic valve calcification. We also explored the effects of raloxifene - an estrogen receptor modulator on valvular calcification. Methods: Gene array analysis was performed in aortic valves obtained from 3 groups of rats (n=7 each): calcified valves from rats fed with uremic diet -high-adenine (0.75%), high-phosphate diet (1.5%), valves after calcification resolution following diet cessation (reversibility) and control. In addition, four groups of rats (n=10 each) were used in order to evaluate the effect of raloxifene in aortic valve calcification: three groups as mentioned above and a fourth group fed with the uremic diet which also received daily raloxifene. Evaluation of these groups included imaging, histology and antigen expression analysis. Results: Gene array results showed that the majority of the expressed genes that were altered were from the diet group valves. Most apoptosis-related genes were changed in a pro-apoptotic direction in calcified valves. Apoptosis and decrease in several survival pathways were confirmed in calcified valves. Resolution of aortic valve calcification was accompanied by decreased apoptosis and upregulation of these ant-apoptotic pathways. Imaging and histology demonstrated that raloxifene significantly decreased aortic valve calcification. Conclusion: Downregulation of several survival pathways and apoptosis are involved in the pathogenesis of aortic valve calcification. The beneficial effect of raloxifene in valve calcification is related to apoptosis modulation. This novel observation is important for developing remedies for aortic valve calcification in patients with renal failure.
Project description:Fewer than 50% of patients develop vascular and valvular calcification, implying differential pathogenesis. Disease stage-specific proteomics (normal/non-diseased/fibrotic/calcified areas) was performed on human carotid artery specimens from autopsy, carotid endarterectomy specimens, aortic valves from heart transplant recipients, and stenotic aortic valves.
Project description:Valve interstial cells(VICs) are the major cellular compents in the aortic valve. Under pathological circumstances, normal VICs differentiate into myofibroblasts or osteoblast-like phentotypes, which play important roles in the pathogenesis of calcified aortic valve disease. We used micrroarrary analysis to compare the global programme of gene expression in normal and calcified human aortic valve intersitial cells (VICs), in order to find out some key factors that mediate the phenotype change of VICs.
Project description:Calcific aortic valve disease (CAVD) is an increasingly prevalent condition and endothelial dysfunction is implicated in its etiology. We previously identified nitric oxide (NO) as a calcification inhibitor by its activation of NOTCH1, which is genetically linked to human CAVD. Here, we show that NO rescues calcification by a S-nitrosylation-mediated mechanism in porcine aortic valve interstitial cells (pAVICs) and single cell RNA-seq demonstrated regulation of NOTCH pathway by NO. A unbiased proteomic approach to identify S-nitrosylated proteins in valve cells found enrichment of the ubiquitin proteasome pathway and implicated S-nitrosylation of USP9X in NOTCH regulation during calcification. Furthermore, S-nitrosylated USP9X was shown to deubiquitinate and stabilize MIB1 for NOTCH1 activation. Consistent with this, genetic deletion of Usp9x in mice demonstrated aortic valve disease and human calcified aortic valves displayed reduced S-nitrosylation of USP9X. These results demonstrate a novel mechanism by which S-nitrosylation dependent regulation of ubiquitin-associated pathway prevents CAVD.
Project description:Calcific aortic valve disease (CAVD) is an slowly progressive calcification of heart valve which leads to aortic stenosis. The only existing treatment of CAVD is surgical replacment of calcified valve - development of anti-CAVD treatment is urgent task. For better understanding of molecular mechanisms of CAVD progression we performed proteomics analysis of osteogenic differentiation of human valve interstitial cells isolated from healthy humans or patients with CAVD.
Project description:Purpose: The molecular mechanisms leading to premature development of aortic valve stenosis (AS) in individuals with a bicuspid aortic valve (BAV) are unknown. The objective of this study was to identify genes differentially expressed between calcified BAV and tricuspid valves with (TAVc) and without (TAVn) calcification using RNA sequencing (RNA-Seq). Methods: Ten human calcified BAV and nine TAVc were collected from men who underwent aortic valve replacement. Eight TAVn were obtained from men who underwent heart transplantation. mRNA levels were measured using the Illumina HiSeq 2000 system. Reads were aligned with TopHat. Cuffdiff, DESeq, edgeR, and SAMSeq were used to compare gene expression. Genes with adjusted P < 0.05 in the four methods were called differentially expressed. Pathway analysis was performed with IPA. Results: Two genes were up-regulated and none were down-regulated in BAV compared to TAVc. There were 462 genes up-regulated and 282 down-regulated in BAV compared to TAVn. Compared to TAVn, 329 genes were up- and 170 were down-regulated in TAVc. Conclusions: This is the first transcriptome study on calcified and normal aortic valves using RNA-Seq. BAV and TAVc have a highly similar expression profile. These results contribute to our molecular understanding of AS and the identification of new therapeutic targets that are urgently needed to prevent, slow the development or treat AS in patients with bicuspid and tricuspid valves.
Project description:Purpose: The molecular mechanisms leading to premature development of aortic valve stenosis (AS) in individuals with a bicuspid aortic valve (BAV) are unknown. The objective of this study was to identify genes differentially expressed between calcified BAV and tricuspid valves with (TAVc) and without (TAVn) calcification using RNA sequencing (RNA-Seq). Methods: Ten human calcified BAV and nine TAVc were collected from men who underwent aortic valve replacement. Eight TAVn were obtained from men who underwent heart transplantation. mRNA levels were measured using the Illumina HiSeq 2000 system. Reads were aligned with TopHat. Cuffdiff, DESeq, edgeR, and SAMSeq were used to compare gene expression. Genes with adjusted P < 0.05 in the four methods were called differentially expressed. Pathway analysis was performed with IPA. Results: Two genes were up-regulated and none were down-regulated in BAV compared to TAVc. There were 462 genes up-regulated and 282 down-regulated in BAV compared to TAVn. Compared to TAVn, 329 genes were up- and 170 were down-regulated in TAVc. Conclusions: This is the first transcriptome study on calcified and normal aortic valves using RNA-Seq. BAV and TAVc have a highly similar expression profile. These results contribute to our molecular understanding of AS and the identification of new therapeutic targets that are urgently needed to prevent, slow the development or treat AS in patients with bicuspid and tricuspid valves.