Project description:Study of gene regulation basidiocarps development in Ustilago maydis using transcriptomic analysis. In 2012, Cabrera-Ponce et al. established conditions allowing a completely different developmental program in U. maydis when grown on solid medium containing Dicamba (synthetic auxin) in dual cultures with maize embryogenic calli.
Project description:Investigation of whole genome gene expression level in Pseudozyma antarctica T-34, compared to Ustilago maydis UM521. To clarify the transcriptomic characteristics of Pseudozyma antarctica under the conditions of high MEL production, a DNA microarray of both the strains, Pseudozyma antarctica T-34 and Ustilago maydis UM521 was prepared and analyzed the transcriptomes.
Project description:Investigation of whole genome gene expression level in Pseudozyma antarctica T-34, compared to Ustilago maydis UM521. To clarify the transcriptomic characteristics of Pseudozyma antarctica under the conditions of high MEL production, a DNA microarray of both the strains, Pseudozyma antarctica T-34 and Ustilago maydis UM521 was prepared and analyzed the transcriptomes. A DNA chip study using mRNA from the cultures of Pseudozyma antarctica T-34 and Ustilago maydis UM521 demonstrated the gene expression level of each strain.
Project description:mRNAs comparison between Ustilago maydis wild type grown in diluted YEPS (control) and in cell-free supernatants of Ustilago maydis wild type treated with H202 in two different concentrations (0.4% and 0.7%).
Project description:The fungal pathogen Ustilago maydis establishes a biotrophic relationship with its host plant maize. Hallmarks of the disease are large plant tumors in which fungal proliferation occurs. Plants have developed various defense pathways to cope with pathogens. We used microarrays to detail the global programme of gene expression during the infection process of Ustilago maydis in its host plant to get insights into the defense programs and the metabolic reprogramming needed to supply the fungus with nutrients. Keywords: time course
Project description:Goals: Comparing the infection between Ustilago maydis SG200 with the wild-type strain FB1xFB2 previously published Methods: Comparative RNASeq analysis between U. maydis SG200 and U. maydis FB1xFB2 at three timepoints (axenic, 2dpi, 12dpi) Results: The RNASeq analysis in SG200 identifies differences in gene expression with FB1xFB2. These differences could be the result of a unequal contribution of each nuclei to transcription. Further analysis identified a set of differentially transcribed genes.
Project description:Ustilago maydis is a plant-pathogenic fungus that establishes a biotrophic relationship with its host Zea mays. The biotrophic interaction is initiated upon host penetration, and involves expansion of the host plasma membrane around hyphae, which is thought to facilitate the exchange of nutrients and virulence factors. Transcriptional regulators involved in the establishment of an infectious dikaryon and penetration into the host have been identified, however, regulators involved in the post-penetration stages remained to be elucidated. In the study we report the identification of an Ustilago maydis forkhead transcription factor, Fox1, which is exclusively expressed during biotrophic development. Deletion of fox1 results in reduced virulence and impaired tumour development in planta. Microarray analyses of Δfox1-infected plant tissue identified Fox1 as a transcriptional activator, involved in the expression of secreted effectors required for virulence.
Project description:The coding transcriptomes of filamentous cultures of the maize smut fungus Ustilago maydis and their extracellular vesicles (EVs) were compared. Protein-coding transcripts relatively enriched in EVs versus filament cells were identified and examined to identify potentially functional mRNA cargos of U. maydis EVs.
Project description:The fungal pathogen Ustilago maydis establishes a biotrophic relationship with its host plant maize. Hallmarks of the disease are large plant tumors in which fungal proliferation occurs. Plants have developed various defense pathways to cope with pathogens. We used microarrays to detail the global programme of gene expression during the infection process of Ustilago maydis in its host plant to get insights into the defense programs and the metabolic reprogramming needed to supply the fungus with nutrients. Experiment Overall Design: In three independent experiments plants were infected with the solopathogenic U. maydis strain SG200. Samples from infected leaves were taken at 12 and 24 hours post infection, as well as 2, 4 and 8 days post infection. Samples from uninfected control plants were taken at the same time points.