Project description:We investigated the anode-specific responses of Shewanella oneidensis MR-1, an exoelectroactive ammaproteobacterium, using for the first time iTRAQ and 2D-LC MS/MS driven membrane proteomics to compare protein abundances in S. oneidensis when generating power in MFCs, and growing in a continuous culture.
Project description:The sumitted data compares gene expression profile of Shewnaella oneidensis MR-1 on two different sets of media conditions (nutritionally rich LB medium and Lactate minimal medium) To explore the effect of various growth phases in Shewanella oneidensis MR-1, the genome-wide transcriptome profiles growth in two sets media was compared to each other. Strain was grown in chemostat at 20% O2 in batch culture. Samples were collected in duplicate from both experiments.
Project description:Comparison of gene expression and mutant fitness in Shewanella oneidensis MR-1 Expression data for 15 growth conditions in mid-exponential phase and expression data across growth phases for 3 of those conditions
Project description:We combined high-resolution tiling microarrays and 5'-end RNA sequencing to obtain a genome-wide map of transcription start sites (TSSs) for Shewanella oneidensis MR-1. To test the reliability of these TSSs, we compared our result to those from differential RNA sequencing (dRNA-seq), which discriminates primary and processed ends of transcripts. We found that our identified TSSs tend to have significantly more mapped reads in the TEX(+) sample than the TEX(-) sample. Overall, the dRNA-seq results support the validity of our predictions for TSS. S. oneidensis MR-1 was grown to mid-log phase in Luria-Bertani broth (LB) or defined lactate minimal medium, and total RNA was isolated and used for differential RNA-sequencing (dRNA-seq) by next-generation sequencing, which is used to verify genome-wide transcription start sites. For dRNA-seq, total RNA was partially treated with Terminator Exonuclease (TEX) to digest processed RNA and thereby enrich for primary transcript ends.
Project description:We combined high-resolution tiling microarrays and 5'-end RNA sequencing to obtain a genome-wide map of transcription start sites (TSSs) for Shewanella oneidensis MR-1. To test the reliability of these TSSs, we compared our result to those from differential RNA sequencing (dRNA-seq), which discriminates primary and processed ends of transcripts. We found that our identified TSSs tend to have significantly more mapped reads in the TEX(+) sample than the TEX(-) sample. Overall, the dRNA-seq results support the validity of our predictions for TSS.