Project description:Halophilic microorganisms have long been known to survive within the brine inclusions of salt crystals, as evidenced by their pigmentation. However, the molecular mechanisms allowing this survival has remained an open question for decades. While protocols for the surface sterilization of halite (NaCl) have enabled isolation of cells and DNA from within halite brine inclusions, “-omics” based approaches have faced two main technical challenges: (1) removal of all contaminating organic biomolecules (including proteins) from halite surfaces, and (2) performing selective biomolecule extractions directly from cells contained within halite brine inclusions with sufficient speed to avoid modifications in gene expression during extraction. In this study, we present methods to resolve these two technical challenges. In addition, we apply these methods to perform the first examination of the early acclimation of a model haloarchaeon (Halobacterium salinarum NRC-1) to halite brine inclusions. Examinations of the proteome of Halobacterium cells two months post-evaporation revealed a high degree of similarity with stationary phase liquid cultures, but with a sharp down-regulation of ribosomal proteins. Low quantities of RNA from halite brine inclusions corroborate the hypothesis of low transcriptional and translational activities. While proteins for central metabolism were part of the shared proteome between liquid cultures and halite brine inclusions, proteins involved in cell mobility (archaellum, gas vesicles) were either absent or less abundant in halite samples. Proteins unique to cells within brine inclusions included transporters, suggesting modified interactions between cells and the surrounding brine inclusions microenvironment. The methods and hypotheses presented here enable future studies of the survival of halophiles in both culture model and natural halite systems.
Project description:The main goal of the project is the study the associations between the gut metagenome and human health. The dataset contains data for n=7211 FINRISK 2002 participants who underwent fecal sampling. Demultiplexed shallow shotgun metagenomic sequences were quality filtered and adapter trimmed using Atropos (Didion et al., 2017), and human filtered using Bowtie2 (Langmead and Salzberg, 2012).
Project description:The main goal of the project is the study the associations between the gut metagenome and human health. The dataset contains data for n=7211 FINRISK 2002 participants who underwent fecal sampling. Demultiplexed shallow shotgun metagenomic sequences were quality filtered and adapter trimmed using Atropos (Didion et al., 2017), and human filtered using Bowtie2 (Langmead and Salzberg, 2012).
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.