Project description:We performed genome-wide transcriptome analyses of the Fusarium fujikuroi wild type compared to the ∆nsd1 mutant Nsd1 is a GATA type transcription factor which has a major impact on growth, conidiation and secondary metabolism in F. fujikuroi
Project description:Histone modifications have been shown to be crucial for secondary metabolism in various filamentous fungi. Here we studied the influence of histone acetylation on secondary metabolite production in the phytopathogenic fungus Fusarium fujikuroi, a known producer of several secondary metabolites including pigments and mycotoxins. Deletion of the classical HDACs FfHdF1, FfHdF2 and FfHdF3 indicated that FfHdF1 and FfHdF2 are major regulators of secondary metabolism, whereas FfHdF3 is involved in developmental processes but dispensable for secondary metabolite production in F. fujikuroi. Microarray analysis with the major HDAC FfHdF2 revealed differential regulation of several secondary metabolite gene clusters, subsequently verified by a combination of chemical and biological approaches. These results indicate that HDACs are responsible for gene silencing but also gene activation. Chromatin immunoprecipitation assays with M-NM-^TffhdF2 revealed significant alterations regarding the acetylation state in the landscape of secondary metabolite gene clusters thereby providing insights into the regulatory mechanism. In addition, the class I HDAC FfHdF1 also has major impact on secondary metabolism in F. fujikuroi. Furthermore, deletion of both ffhdF1 and ffhdF2 resulted in de-repression of secondary metabolites under normally repressing conditions. Thus, manipulation of HDAC encoding genes might provide a powerful tool for the activation of cryptic secondary metabolites. Investigation of whole genome gene expression of the Fusarium fujikuroi wild type IMI58289, M-NM-^TffhdF2 mutant under nitrogen starvation and nitrogen sufficient conditions. In this study we hybridized in total 12 microarrays using total RNA recovered from a wild-type culture of F. fujikuroi IMI58289 and M-NM-^TffhdF2 mutant culture. All cultures were grown on a 6 mM Gln (10%) and a 60 mM Gln medium (100%). For each combination of culture and medium a biological replicate was created. Each chip measures the expression level of 14,397 genes from F. fujikuroi IMI58289 with eight 60-mer probes.
Project description:Genome-wide search for AreA-dependent and -independent nitrogen-regulated genes in Fusarium fujikuroi by cross-species hybridization with F. verticillioides microarrays. Keywords: glutamine treatmet Compare expression of genes of Fusarium fujikuroi wild-type and areA mutant strains responding to nitrogen limitation or sufficiency.
Project description:Investigation of whole genome gene expression level differences of Fusarium fujikuroi between wild-type and a Ffvel1 (velvet) deletion mutant in liquid medium with minimal nitrogen between 24 hr, 72 hr and 120 hr of growth using an array based on a F. verticillioides gene call set. Fusarium fujikuroi produces a number of secondary metabolites including gibberellins, bikaverin, fumonisin and fusarin C that are influenced by nitrogen availability and the velvet global regulatory complex. A twelve chip study using total RNA recovered from six cultures of wild-type Fusarium fujikuroi and six cultures of Ffvel1 F. fujikuroi deletion mutant. Each chip measures the expression level of over 13,000 putative genes with twelve 60-mer probes per sequence.
Project description:The phytopathogenic fungus Fusarium fujikuroi is the causal agent of bakanae disease on rice due to its ability to produce gibberellins. Besides these phytohormones, F. fujikuroi is able to produce a wide range of other secondary metabolites (SMs), such as mycotoxins and pigments. Although much progress has been made in the field of secondary metabolism over the last years, the transcriptional regulation of SM biosynthetic genes is complex and far from being fully understood. Environmental conditions (e.g. nitrogen availability and pH), global and pathway-specific regulators as well as chromatin remodeling were shown to play major roles in this regulation. Here, the role of FfSge1, a homolog of the morphological switch regulators Wor1 and Ryp1 in Candida albicans and Histoplasma capsulatum, respectively, is explored with emphasis on secondary metabolism. FfSge1 is not required for conidia formation and pathogenicity, but is involved in vegetative growth. Genome-wide transcriptome analysis of the M-NM-^Tffsge1 deletion mutant compared to the wild type revealed that FfSge1 is a global regulator of secondary metabolism in F. fujikuroi that activates the expression of several SMs. In addition, FfSge1 is also required for expression of a yet uncharacterized SM gene cluster containing a noncanonical non-ribosomal peptide synthetase. Investigation of whole genome gene expression of the Fusarium fujikuroi wild type IMI58289, M-NM-^Tffsge1 mutant under nitrogen starvation and nitrogen sufficient conditions. In this study we hybridized in total 8 microarrays using total RNA recovered from a wild-type culture of F. fujikuroi IMI58289 and M-NM-^Tffsge1 mutant culture. All cultures were grown on a 6 mM Gln (10%) and a 60 mM Gln medium (100%). For each combination of culture and medium a biological replicate was created. Each chip measures the expression level of 14,397 genes from F. fujikuroi IMI58289 with eight 60-mer probes. Please note that the wild type samples have been published as part of the GEO accession GSE43745, but re-analyzed with the M-NM-^Tffsge1 mutant samples in the current study.
Project description:Post-translational modification of histones is a crucial mode of transcriptional regulation in eukaryotes. A well-described acetylation modifier of certain lysine residues is the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex assembled around the histone acetyltransferase Gcn5 in Saccharomyces cerevisiae. We identified and characterized the SAGA complex in the rice pathogen Fusarium fujikuroi, well-known for producing a large variety of secondary metabolites (SMs). By using a co-immunoprecipitation approach, almost all of the S. cerevisiae SAGA complex components have been identified, except for the ubiquitinating DUBm module and the chromodomain containing Chd1. Deletion of GCN5 led to impaired growth, loss of conidiation and alteration of SM biosynthesis. Furthermore, we show that in F. fujikuroi Gcn5 is essential for the acetylation of several histone 3 lysines, i.e. H3K4, H3K9, H3K18 and H3K27. A genome-wide microarray analysis revealed differential expression of about 30% of the genome with an enrichment of genes involved in primary and secondary metabolism, transport and histone modification. HPLC-based analysis of known SMs revealed significant alterations in the Δgcn5 mutant. While most SM genes were activated by Gcn5 activity, the biosynthesis of the pigment bikaverin was strongly increased upon GCN5 deletion underlining the diverse roles of the SAGA complex in F. fujikuroi. Investigation of whole genome gene expression of the Fusarium fujikuroi wild type IMI58289 and the Δgcn5 mutant under nitrogen starvation and nitrogen sufficient conditions.
Project description:Histone modifications have been shown to be crucial for secondary metabolism in various filamentous fungi. Here we studied the influence of histone acetylation on secondary metabolite production in the phytopathogenic fungus Fusarium fujikuroi, a known producer of several secondary metabolites including pigments and mycotoxins. Deletion of the classical HDACs FfHdF1, FfHdF2 and FfHdF3 indicated that FfHdF1 and FfHdF2 are major regulators of secondary metabolism, whereas FfHdF3 is involved in developmental processes but dispensable for secondary metabolite production in F. fujikuroi. Microarray analysis with the major HDAC FfHdF2 revealed differential regulation of several secondary metabolite gene clusters, subsequently verified by a combination of chemical and biological approaches. These results indicate that HDACs are responsible for gene silencing but also gene activation. Chromatin immunoprecipitation assays with ΔffhdF2 revealed significant alterations regarding the acetylation state in the landscape of secondary metabolite gene clusters thereby providing insights into the regulatory mechanism. In addition, the class I HDAC FfHdF1 also has major impact on secondary metabolism in F. fujikuroi. Furthermore, deletion of both ffhdF1 and ffhdF2 resulted in de-repression of secondary metabolites under normally repressing conditions. Thus, manipulation of HDAC encoding genes might provide a powerful tool for the activation of cryptic secondary metabolites. Investigation of whole genome gene expression of the Fusarium fujikuroi wild type IMI58289, ΔffhdF2 mutant under nitrogen starvation and nitrogen sufficient conditions.
Project description:We performed genome-wide transcriptome analyses of the Fusarium fujikuroi wild type compared to the ∆lae1 and OE:lae1 mutants under nitrogen limiting and nitrogen sufficient conditions Lae1 was shown to be a master regulator of secondary metabolite gene clusters in F. fujikuroi. Deletion of the gene resulted in down-regulation, while overexpression resulted in up-regulation of several gene clusters, partially even under otherwise repressing conditions.
Project description:Investigation of whole genome gene expression level differences of Fusarium fujikuroi between wild-type and a Ffvel1 (velvet) deletion mutant in liquid medium with minimal nitrogen between 24 hr, 72 hr and 120 hr of growth using an array based on a F. verticillioides gene call set. Fusarium fujikuroi produces a number of secondary metabolites including gibberellins, bikaverin, fumonisin and fusarin C that are influenced by nitrogen availability and the velvet global regulatory complex.
Project description:Genome-wide search for AreA-dependent and -independent nitrogen-regulated genes in Fusarium fujikuroi by cross-species hybridization with F. verticillioides microarrays. Keywords: glutamine treatmet