Project description:The Tibellus genus spider is an active hunter that does not spin webs and remains highly underinvestigated in terms of the venom composition. Here, we present a combination of venom glands transcriptome cDNA analysis, venom proteome analysis for unveiling of the Tibellus genus spider venom composition.
Project description:Spider silk proteins are synthesized in the silk-producing glands, where the spidroins are produced, stored and processed into a solid fiber from a crystalline liquid solution. Despite great interest in the spider silk properties, that make this material suitable for biomedical and biotechnological applications, the mechanism of formation and spinning of the silk fibers has not been fully elucidated; and no combination of proteomic and transcriptomic study has been carried out so far in the spider silk-producing glands. Nephila clavipes is an attractive orb-web spider to investigate the spinning process of silk production, given the properties of strength, elasticity and biocompatibility of their silk fibers. Thus, considering that the combination of proteomic and transcriptomic analysis may reveal an extensive repertoire of novel proteins involved in the silk spinning process, and in order to facilitate and enable proteomics in this non-model organism, the current study aims to construct a high quality reference mRNA-derived protein database that could be used to identify tissue specific expression patterns in spider silk glands. Next-generation sequencing has offered a powerful and cost-efficient technique for the generation of transcriptomic datasets in non-model species using diverse platforms such as the Illumina HiSeq, Roche 454, Pacific Biosystems, and Applied Biosystems SOLiD; In the current study, the Illumina HiSeq 2000 platform will be used to generate a N. clavipes spider silk glands transcriptome-based protein database. The transcriptome data generated in this study will provide a comprehensive and valuable genomic resource for future research of the group of spider silk-producing glands, in order to improve our understanding of the overall mechanism of action involved in production, secretion, storage, transport, protection and conformational changes of spidroins during the spinning process, and prey capture; and the results may be relevant for scientists in material Science, biology, biochemistry, and environmental scientists.
Project description:This dataset comprises bulk RNA sequencing of 45 samples isolated from adult female L. sclopetarius spiders. The samples include spider abdomen (5 replicates), head (5), major ampullate glands (5), minor ampullate glands (5), aggregate glands (5), tubuliform glands (3), and major ampullate gland cut into three parts, i.e., tail (6), sac (6) and duct (5).
Project description:Orb-weaving spiders use a highly strong, sticky and elastic web to catch their prey. These web properties alone would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets in the web, which current research is revealing. Here, we provide strong proteotranscriptomic evidence for the presence of toxin/neurotoxin-like proteins, defensins and proteolytic enzymes on the web silk from Nephila clavipes spider. The results from quantitative-based transcriptomics and proteomic approaches showed that silk-producing glands produce an extensive repertoire of toxin/neurotoxin-like proteins, similar to those already reported in spider venoms. Meanwhile, the insect toxicity results demonstrated that these toxic components can be lethal and/or paralytic chemical weapons used for prey capture on the web; and the presence of fatty acids in the web may be responsible mechanism for open the way to the web-toxins for accessing the interior of prey's body, as showed here. Comparative phylogenomic-level evolutionary analyses revealed orthologous genes among two spider groups - Araneomorphae and Mygalomorphae; and the findings showed protein sequences similar to toxins found in the taxa Scorpiones and Hymenoptera in addition to Araneae. Overall, these data represent a valuable resource to further investigate other spider web toxin systems; these data also suggest that N. clavipes web is not a passive mechanical trap for prey capture, but it exerts an active role in prey paralysis/killing using a series of neurotoxins.
Project description:Spider silk synthesis is an emerging model for the evolution of tissue-specific gene expression and the role of gene duplication in functional novelty, but its potential has not been fully realized. Accordingly, we quantified transcript (mRNA) abundance in seven silk gland types and three non-silk gland tissues for three cobweb-weaving spider species. Evolutionary analyses based on expression levels of thousands of homologous transcripts and phylogenetic reconstruction of 605 gene families demonstrated conservation of expression for each gland type among species. Despite serial homology of all silk glands, the expression profiles of the glue-forming aggregate glands were divergent from fiber-forming glands. Also surprising was our finding that shifts in gene expression among silk gland types were not necessarily coupled with gene duplication, even though silk-specific genes belong to multi-paralog gene families. Our results challenge widely accepted models of tissue specialization and significantly advance efforts to replicate silk-based high-performance biomaterials.
Project description:Spider silk research has largely focused on spidroins, proteins that are the primary components of spider silk fibers. Although a number of spidroins have been characterized, other types of proteins associated with silk synthesis are virtually unknown. Previous comparison of tissue-specific RNAseq libraries identified 647 predicted genes that were differentially expressed in silk glands of the Western black widow, Latrodectus hesperus. Only ~5% of these transcripts encode spidroins and the remaining predicted genes presumably encode other proteins associated with silk production. Here, we used proteomic analysis of multiple silk glands and dragline silk fiber to investigate the translation of the differentially expressed genes. We find 48 proteins encoded by the differentially expressed transcripts in L. hesperus major ampullate, minor ampullate, and tubuliform silk glands, and detect 16 SST encoded proteins in major ampullate silk fibers. The observed proteins include known silk-related proteins, but most are uncharacterized, with no annotation. These unannotated proteins likely include novel silk associated proteins. Major ampullate and minor ampullate glands have the highest overlap of identified proteins, consistent with their shared, distinctive ampullate shape and the overlapping functions of major ampullate and minor ampullate silks. Our study substantiates and prioritizes predictions from differential expression analysis of spider silk gland transcriptomes.
Project description:Spider silk research has largely focused on spidroins, proteins that are the primary components of spider silk fibers. Although a number of spidroins have been characterized, other types of proteins associated with silk synthesis are virtually unknown. Previous comparison of tissue-specific RNAseq libraries identified 647 predicted genes that were differentially expressed in silk glands of the Western black widow, Latrodectus hesperus. Only ~5% of these transcripts encode spidroins and the remaining predicted genes presumably encode other proteins associated with silk production. Here, we used proteomic analysis of multiple silk glands and dragline silk fiber to investigate the translation of the differentially expressed genes. We find 48 proteins encoded by the differentially expressed transcripts in L. hesperus major ampullate, minor ampullate, and tubuliform silk glands, and detect 16 SST encoded proteins in major ampullate silk fibers. The observed proteins include known silk-related proteins, but most are uncharacterized, with no annotation. These unannotated proteins likely include novel silk associated proteins. Major ampullate and minor ampullate glands have the highest overlap of identified proteins, consistent with their shared, distinctive ampullate shape and the overlapping functions of major ampullate and minor ampullate silks. Our study substantiates and prioritizes predictions from differential expression analysis of spider silk gland transcriptomes.
Project description:This study aims to understand ethylene-induced flowering in Aechmea fasciata. During ethylene-induced flowering, AfFTL2 expression is induced and targets the EIN3 binding site ‘ATGTAC’ by AfEIL1-like.
Project description:The eccrine sweat gland is an exocrine gland that is involved in the secretion of sweat for control of temperature. Malfunction of the sweat glands can result in disorders such as miliaria, hyperhidrosis and bromhidrosis. In addition, inadequate reabsorption of salt from sweat is a major feature of cystic fibrosis. Understanding the transcriptome and proteome of sweat glands is important for understanding the physiology and the role in disease. However, no systematic transcriptome or proteome analysis of sweat glands has yet been reported. To this end, we isolated eccrine sweat glands by microdissecting them from human skin and performed both RNA-seq and proteome analysis. In total, ~138,000 transcripts and ~6,100 proteins were identified. The proteome data of eccrine sweat gland showed enrichment of proteins involved in secretion, reabsorption, and wound healing while the transcriptome data did not show any enrichment for a specific pathway. Importantly, protein level identification of TRPV4 in eccrine sweat gland establishes its importance in re-epithelialization of partial-thickness wound and prevention of dehydration. Furthermore, this study enabled us to identify2 missing proteins. Integration of RNA-seq and proteomic data allowed us to identify 7 peptides from 5 novel genes. Most of the novel proteins were from short open reading frames (sORFs) suggesting that many sORFs still remain to be annotated in the human genome. The peptides mapping to the missing or novel proteins were validated by analyzing synthetic peptides. This study provides the first integrated analysis of the transcriptome and proteome of the human eccrine sweat gland and should become an invaluable resource to biomedical research community for studying sweat glands in physiology and disease.