Project description:We report that the PRC1 component polycomb group ring finger 6 (Pcgf6) is required to maintain embryonic stem cell (ESC) identity. In contrast to canonical PRC1, Pcgf6 acts as a positive regulator of transcription and binds predominantly to promoters bearing active chromatin marks. Pcgf6 is expressed at high levels in ESCs, and knockdown reduces the expression of the core ESC regulators Oct4,Sox2, and Nanog. Conversely, Pcgf6 overexpression prevents downregulation of these factors and impairs differentiation. In addition, Pcgf6 enhanced reprogramming in both mouse and human somatic cells. The genomic binding profile of Pcgf6 is highly similar to that of trithorax group proteins, but not of PRC1 or PRC2 complexes, suggesting that Pcgf6 functions atypically in ESCs. Our data reveal novel roles for Pcgf6 in directly regulating Oct4, Nanog, Sox2, and Lin28 expression to maintain ESC identity. To identify Pcgf6-bound genomic DNA regions in mouse embryonic stem cells, we fixed mouse ESCs and isolated Pcgf6-bound genomic DNA regions for deep sequencing analysis.
Project description:ChIP-seq data of embryonic stem cells to detect Ring1b and Pcgf6 binding sites ChIP-seq of embryonic stem cell H3K9me2 with or without Pcgf6.
Project description:Polycomb group (PcG) proteins comprise a large group of evolutionary conserved factors with essential roles for embryonic development and adult stem cell function. PcG proteins constitute two main multiprotein polycomb repressive complexes (PRC1 and PRC2) that operate in a hierarchical manner to silence gene expression. Functionally distinct PRC1 complexes are defined by Polycomb group RING finger protein (PCGF) paralogs. So far, six PCGF paralogs (PCGF1-6) have been identified but paralog-specific functions are not well understood. In our studies, we observed that Pcgf6 showed the highest expression level in undifferentiated murine embryonic stem cells (ESCs), blastocysts and testes. When ESCs differentiated, Pcgf6 expression strongly declined. To further investigate Pcgf6 biology, we established dox-inducible shRNA knockdown (KD) ESCs. Following Pcgf6 KD in ESCs the expression of pluripotency genes decreased, while mesodermal- and spermatogenesis-specific genes were de-repressed. Concomitantly with the elevated expression of mesodermal lineage markers, Pcgf6 KD ESCs showed increased hemangioblastic and hematopoietic activities. Finally, PCGF6 replaced SOX2 but not KLF4 or c-MYC in the generation of germline-competent iPS cells. Forced expression of Pcgf6 in OSKM-driven reprogramming increases iPS efficiency while Pcgf6 KD reduces the formation of ESC-like colonies. Together, these analyses show that Pcgf6 is non-redundantly involved in maintaining the pluripotent nature of ESCs and functions in iPS reprogramming. 6 samples were hybridized GeneChip Mouse Gene 1.0 ST Arrays (Affymetrix)