Project description:Wnt/-catenin signaling controls self-renewal and pluripotency maintenance in both embryonic and adult stem cells (SCs) in mouse. We show that the activation of Wnt pathway drastically reduces proliferation of mESCs by direct binding of the the Wnt-effector Tcf1 to directly binds and regulates the Ink4/Arf locus , thereby Wnt pathway activation drastically reduces proliferation of mESCs and its regulation. We have conducted ChipSeq experiments for Tcf1 and Tcf3 with background to identify the genome wide binding locations Tcf1 and Tcf3 in mouse ESC.
Project description:The objective of this study was to identify genes regulated by canonical Wnt signaling in mouse embryonic stem cells (ESCs).Canonical Wnt signaling supports the pluripotency of mouse ESCs but also promotes differentiation of early mammalian cell lineages. To explain these paradoxical observations, we explored the gene regulatory networks at play. Canonical Wnt signaling is intertwined with the pluripotency network comprising Nanog, Oct4, and Sox2 in mouse ESCs. In defined media supporting the derivation and propagation of mouse ESCs, Tcf3 and ?-catenin interact with Oct4; Tcf3 binds to Sox motif within Oct-Sox composite motifs that are also bound by Oct4-Sox2 complexes. Further, canonical Wnt signaling up-regulates the activity of the Pou5f1 distal enhancer via the Sox motif in mouse ESCs. When viewed in the context of published studies on Tcf3 and ?-catenin mutants, our findings suggest that Tcf3 counters pluripotency by competition with Sox2 at these sites, and Tcf3 inhibition is blocked by ?-catenin entry into this complex. Wnt pathway stimulation also triggers ?-catenin association at regulatory elements with classic Lef/Tcf motifs associated with differentiation programs. The failure to activate these targets in the presence of a MEK/ERK inhibitor essential for mouse ESC culture suggests that MEK/ERK signaling and canonical Wnt signaling combine to promote mouse ESC differentiation. Triplicates of mouse embryonic stem cells cultured with GSK3 inhibitor CHIR99021 or with Wnt pathway inhibitor XAV939.
Project description:The observation that Tcf3 (MGI name: Tcf7l1) bound the same genes as core stem cell transcription factors, Oct4 (MGI name:Pou5f1), Sox2 and Nanog, revealed a potentially important aspect of the poorly understood mechanism whereby Wnts stimulate self renewal of pluripotent mouse embryonic stem (ES) cells. Although the conventional view of Tcf proteins as the β-catenin-binding effectors of Wnt signaling suggested Tcf3 should activate target genes in response to Wnts, here we show that Wnt3a and Tcf3 effectively antagonize each other’s effects on gene expression. Genetic ablation of Tcf3 caused similar effects as treating cells with recombinant Wnt3a. Moreover, Tcf3 was not necessary for Wnt3a-stimulation of gene expression as the majority of Wnt3a-stimulated genes exhibited a greater increase in Tcf3-/- ES cells than in Tcf3+/+ ES cells. These expression data, together with genetic experiments, show that Wnt3a stimulates ES cell self renewal by inhibiting Tcf3. Tcf3+/+ and Tcf3-/- mouse embryonic stem cells were cultured in self renewal conditions containing recombinant Wnt3a for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Regulatory factors controlling stem cell identity and self-renewal are often active in aggressive cancers and are thought to promote their growth and progression. TCF3 (also known as TCF7L1) is a member of the TCF/LEF transcription factor family that is central in regulating epidermal and embryonic stem (ES) cell identity. We found that TCF3 is highly expressed in poorly differentiated human breast cancers, preferentially of the basal-like subtype. This suggested that TCF3 is involved in the regulation of breast cancer cell differentiation state and tumorigenicity. Silencing of TCF3 dramatically decreased the ability of breast cancer cells to initiate tumor formation, and led to decreased tumor growth rates. In culture, TCF3 promotes the sphere formation capacity of breast cancer cells and their self-renewal. We found that in contrast to ES cells, where it represses Wnt-pathway target genes, TCF3 promotes the expression of a subset of Wnt-responsive genes in breast cancer cells, while repressing another distinct target subset. In the normal mouse mammary gland Tcf3 is highly expressed in terminal end buds, structures that lead duct development. Primary mammary cells are dependent on Tcf3 for mammosphere formation, and its overexpression in the developing gland disrupts ductal growth. Our results identify TCF3 as a central regulator of tumor growth and initiation, and a novel link between stem cells and cancer. Cells infected with different shRNA vectors were either untreated, treated with control or Wnt3A condition medium. Condition medium treatments were done in biological repeats.
Project description:The objective of this study was to investigate the roles of GSK3 inhibitor CHIR99021 and MEK inhibitor PD0325901 on 2i-adapted mouse embryonic stem cells (ESCs) in serum-free conditions.Canonical Wnt signaling supports the pluripotency of mouse ESCs but also promotes differentiation of early mammalian cell lineages. To explain these paradoxical observations, we explored the gene regulatory networks at play. Canonical Wnt signaling is intertwined with the pluripotency network comprising Nanog, Oct4, and Sox2 in mouse ESCs. In defined media supporting the derivation and propagation of mouse ESCs, Tcf3 and β-catenin interact with Oct4; Tcf3 binds to Sox motif within Oct-Sox composite motifs that are also bound by Oct4-Sox2 complexes. Further, canonical Wnt signaling up-regulates the activity of the Pou5f1 distal enhancer via the Sox motif in mouse ESCs. When viewed in the context of published studies on Tcf3 and β-catenin mutants, our findings suggest that Tcf3 counters pluripotency by competition with Sox2 at these sites, and Tcf3 inhibition is blocked by β-catenin entry into this complex. Wnt pathway stimulation also triggers β-catenin association at regulatory elements with classic Lef/Tcf motifs associated with differentiation programs. The failure to activate these targets in the presence of a MEK/ERK inhibitor essential for mouse ESC culture suggests that MEK/ERK signaling and canonical Wnt signaling combine to mouse promote ESC differentiation. Triplicates of mouse embryonic stem cells cultured under the following conditions: 1) CHIR99021+PD0325901+LIF; 2) CHIR99021+PD0325901; 3) CHIR99021; 4) PD0325901; 5) DMSO
Project description:The objective of this study was to identify the direct target genes of M-NM-2-catenin acting downstream of canonical Wnt signaling in mouse embryonic stem cells (ESCs).Canonical Wnt signaling supports the pluripotency of mouse ESCs but also promotes differentiation of early mammalian cell lineages. To explain these paradoxical observations, we explored the gene regulatory networks at play. Canonical Wnt signaling is intertwined with the pluripotency network comprising Nanog, Oct4, and Sox2 in mouse ESCs. In defined media supporting the derivation and propagation of mouse ESCs, Tcf3 and M-NM-2-catenin interact with Oct4; Tcf3 binds to Sox motif within Oct-Sox composite motifs that are also bound by Oct4-Sox2 complexes. Further, canonical Wnt signaling up-regulates the activity of the Pou5f1 distal enhancer via the Sox motif in mouse ESCs. When viewed in the context of published studies on Tcf3 and M-NM-2-catenin mutants, our findings suggest that Tcf3 counters pluripotency by competition with Sox2 at these sites, and Tcf3 inhibition is blocked by M-NM-2-catenin entry into this complex. Wnt pathway stimulation also triggers M-NM-2-catenin association at regulatory elements with classic Lef/Tcf motifs associated with differentiation programs. The failure to activate these targets in the presence of a MEK/ERK inhibitor essential for mouse ESC culture suggests that MEK/ERK signaling and canonical Wnt signaling combine to promote mouse ESC differentiation. bCatenin ChIP-seq using anti-FLAG antibody and Streptavidin were otained from embryonic stem cells treated by CHIR99021 for 24 hours. Input without IP process were used as the control.