Project description:Precise spatiotemporal regulation of genetic programs, driven by cellspecific super-enhancers, is paramount for the function of cell lineages. Studies have suggested that insulated neighborhoods, formed by the zincfinger protein CTCF, sequester genes and their associated enhancers thus preventing them from trespassing on off-target genes. Although this could explain the enhancer-gene-specificity conundrum, there is limited genetic evidence that the search space of cell-specific super-enhancers is constrained by CTCF. We have addressed this question in the Wap locus with its exceptional mammary-specific super-enhancer, which is separated by five CTCF sites from neighboring genes. Three of these sites are positioned between the Wap super-enhancer and the widely expressed Ramp3. Enhancer deletions demonstrated that the Wap super-enhancer controls Ramp3 expression despite the presence of three parting CTCF sites. Individual and combinatorial deletions of these CTCF sites revealed cell-specific functions of the conserved anchor site. Although unable to block super-enhancer activity, it muffled its impact on Ramp3 in mammary tissue. Unexpectedly, this CTCF site was obligatory for Ramp3 expression in cerebellum, suggesting the coinciding presence of regulatory elements. While our results suggest a surprisingly limited in vivo role for a CTCF anchor in blocking a mammary-specific super-enhancer, they also implicate this site in cerebellum-specific gene activation. Our study illustrates additional complexities of CTCF sites supporting tissue-specific functions.
Project description:Precise spatiotemporal regulation of genetic programs, driven by cellspecific super-enhancers, is paramount for the function of cell lineages. Studies have suggested that insulated neighborhoods, formed by the zincfinger protein CTCF, sequester genes and their associated enhancers thus preventing them from trespassing on off-target genes. Although this could explain the enhancer-gene-specificity conundrum, there is limited genetic evidence that the search space of cell-specific super-enhancers is constrained by CTCF. We have addressed this question in the Wap locus with its exceptional mammary-specific super-enhancer, which is separated by five CTCF sites from neighboring genes. Three of these sites are positioned between the Wap super-enhancer and the widely expressed Ramp3. Enhancer deletions demonstrated that the Wap super-enhancer controls Ramp3 expression despite the presence of three parting CTCF sites. Individual and combinatorial deletions of these CTCF sites revealed cell-specific functions of the conserved anchor site. Although unable to block super-enhancer activity, it muffled its impact on Ramp3 in mammary tissue. Unexpectedly, this CTCF site was obligatory for Ramp3 expression in cerebellum, suggesting the coinciding presence of regulatory elements. While our results suggest a surprisingly limited in vivo role for a CTCF anchor in blocking a mammary-specific super-enhancer, they also implicate this site in cerebellum-specific gene activation. Our study illustrates additional complexities of CTCF sites supporting tissue-specific functions.
Project description:Precise spatiotemporal regulation of genetic programs, driven by cellspecific super-enhancers, is paramount for the function of cell lineages. Studies have suggested that insulated neighborhoods, formed by the zincfinger protein CTCF, sequester genes and their associated enhancers thus preventing them from trespassing on off-target genes. Although this could explain the enhancer-gene-specificity conundrum, there is limited genetic evidence that the search space of cell-specific super-enhancers is constrained by CTCF. We have addressed this question in the Wap locus with its exceptional mammary-specific super-enhancer, which is separated by five CTCF sites from neighboring genes. Three of these sites are positioned between the Wap super-enhancer and the widely expressed Ramp3. Enhancer deletions demonstrated that the Wap super-enhancer controls Ramp3 expression despite the presence of three parting CTCF sites. Individual and combinatorial deletions of these CTCF sites revealed cell-specific functions of the conserved anchor site. Although unable to block super-enhancer activity, it muffled its impact on Ramp3 in mammary tissue. Unexpectedly, this CTCF site was obligatory for Ramp3 expression in cerebellum, suggesting the coinciding presence of regulatory elements. While our results suggest a surprisingly limited in vivo role for a CTCF anchor in blocking a mammary-specific super-enhancer, they also implicate this site in cerebellum-specific gene activation. Our study illustrates additional complexities of CTCF sites supporting tissue-specific functions.
Project description:The zinc finger protein CTCF has been invoked in establishing functional boundaries between genes and thereby controlling enhancer activities. However, there is limited genetic evidence to support such a concept. We have now addressed this question in a locus containing five mammary-specific genes controlled by enhancers. We have identified four CTCF binding sites in the casein locus, two at the outside boundaries and two associated with a super-enhancer. Individual deletions of these sites from the mouse genome did not alter expression of the five casein genes and Odam. However, deletion of the border CTCF site separating the Csn1s1 enhancer from non-mammary genes resulted in the activation of Sult1d1 at a distance of more than 95 kb but not the more proximal Sult1e1 gene. Loss of this CTCF site led to de novo interactions between the Csn1s1 enhancer and the Sult1d1 promoter but not with the silent Sult1e1 gene. Our study suggests that most CTCF sites associated with cell-specific enhancers and super-enhancers have no measurable in vivo activity. Only the loss of one CTCF site led to the induction of a juxtaposed active non-target promoter. Our study also demonstrated that cell-specific enhancers are unable to activate juxtaposed silent non-target promoters.
Project description:Super-enhancers comprise of dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate their role in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-Seq for the master regulator STAT5, the glucocorticoid receptor, H3K27ac and MED1, identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5 binding sites within its three constituent enhancers. Individually, only the most distal site displayed significant enhancer activity. However, combinatorial mutations showed that the 1,000-fold gene induction relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer, suggesting an enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insight into the complexity of cell-specific and hormone-regulated genes. ChIP-Seq for STAT5A, GR, H3K27ac, MED1, NFIB, ELF5, RNA Pol II, and H3K4me3 in wild type (WT) mammary tissues at day one of lactation (L1), and ChIP-Seq for STAT5A, GR, H3K27ac, MED1, NFIB, ELF5, and H3K4me3 in WT mammary tissues at day 13 of pregnancy (p13). ChIP-Seq for STAT5A, GR, H3K27a in Wap-delE1a, -delE1b, -delE1c, -delE2 and -delE3 mutant mammary tissues at L1, and ChIP-Seq for NFIB and ELF5 in Wap-delE1b and -delE1c mutant mammary tissues at L1. ChIP-Seq for H3K4me3 in mammary-epthelial cells at p13 and L1. DNase-seq in WT mammary tissues at L1 and DNase-seq in Wap-delE1a, -delE1c, and -delE3 mutant mammary tissues at L1.
Project description:Super-enhancers comprise of dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate their role in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-Seq for the master regulator STAT5, the glucocorticoid receptor, H3K27ac and MED1, identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5 binding sites within its three constituent enhancers. Individually, only the most distal site displayed significant enhancer activity. However, combinatorial mutations showed that the 1,000-fold gene induction relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer, suggesting an enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insight into the complexity of cell-specific and hormone-regulated genes.
Project description:Enhancers play key roles in gene regulation. However, comprehensive enhancer discovery is challenging because most enhancers, especially those affected in complex diseases, have weak effects on gene expression. Through gene regulatory network modeling, we identified that dynamic cell state transitions, a critical missing component in prevalent enhancer discovery strategies, can be utilized to improve the cells’ sensitivity to enhancer perturbation. Guided by the modeling results, we performed a mid-transition CRISPRi-based enhancer screen utilizing human embryonic stem cell definitive endoderm differentiation as a dynamic transition system. The screen discovered a comprehensive set of enhancers (4 to 9 per locus) for each of the core lineage-specifying transcription factors (TFs), including many enhancers with weak to moderate effects. Integrating the screening results with enhancer activity measurements (ATAC-seq, H3K27ac ChIP-seq) and three-dimensional enhancer-promoter interaction information (CTCF looping, Hi-C), we were able to develop a CTCF loop-constrained Interaction Activity (CIA) model that can better predict functional enhancers compared to models that rely on Hi-C-based enhancer-promoter contact frequency. Together, our dynamic network-guided enhancer screen and the CIA enhancer prediction model provide generalizable strategies for sensitive and more comprehensive enhancer discovery in both normal and pathological cell state transitions.