ABSTRACT: Complete genome sequence of Lactobacillus rhamnosus Pen – a probiotic component of medicine preventing of antibiotic-associated diarrhoea in children.
Project description:The human microbiota is believed to influence health. Microbiome dysbiosis may be linked to neurological conditions like Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD). We report the ability of a probiotic bacterial strain in halting neurodegeneration phenotypes. We show that Lacticaseibacillus rhamnosus HA-114 is neuroprotective in C. elegans models of ALS and HD. Our results show that neuroprotection from L. rhamnosus HA-114 is unique from other L. rhamnosus strains, and resides in its fatty acid content. Neuroprotection by L. rhamnosus HA-114 requires acdh-1/ACADSB, kat-1/ACAT1 and elo-6/ELOVL3/6, which are key fatty acid metabolism and mitochondrial b-oxidation genes. Our data suggest that disrupted lipid metabolism contributes to neurodegeneration and that dietary intervention with L. rhamnosus HA-114 restores lipid homeostasis and energy balance through mitochondrial b-oxidation. L. rhamnosus HA-114 is suitable for human consumption opening the possibility of modifying disease progression by dietary intervention.
Project description:The present study reports comparative surfacomics (study of cell-surface exposed proteins) of the probiotic Lactobacillus rhamnosus strain GG and the dairy strain Lc705.
Project description:Transcriptional profiling of probiotic Lactobacillus rhamnosus strain GG mid-exponential pH-controlled bioreactor cultures before and after exposure to bovine bile (0.2% ox gall). Keywords: bile, stress response
Project description:Transcriptional profiling of probiotic Lactobacillus rhamnosus GG during growth in industrial-type whey medium in pH-controlled bioreactor cultures at two different growth pH: 4.8 and 5.8. Keywords: growth phase, growth pH
Project description:Transcriptional profiling of probiotic Lactobacillus rhamnosus strain GG mid-exponential pH-controlled bioreactor cultures before and after exposure to bovine bile (0.2% ox gall). Keywords: bile, stress response Cell samples from four biological replicates were harvested right before (time point 0 min) and 10, 30 and 120 min after bile treatment. Each sample was compared to a common reference sample (time point 0 min, mid-exponential growth phase Lactobacillus rhamnosus GG cultures). A total of 12 hybridizations were performed using balanced dye-swap design. Dyes were balanced between compared sample pairs and between biological replicates.
Project description:The presence of tagatose in Lactobacillus rhamnosus strain GG caused induction of a large number of genes associated with carbohydrate metabolism including the phosphotransferase system. In addition, these results indicate the tagatose enhanced the growth of Lactobacillus casei 01 and Lactobacillus rhamnosus strain GG and their probiotic activities by activating tagatose-associated PTS networks. Two-condition experiment, Lactobacillus rhamnosus GG with glucose vs. Lactobacillus rhamnosus GG with tagatose. For preparing the total RNA, Lactobacillus rhamnosus GG cells were grown at 37M-BM-0C in prebiotic minimum medium supplemented with 2% glucose or tagatose for 24 h.
Project description:Identification of proteins contained in extracellular vesicles of Lacticaseibacillus rhamnosus PCM 489. Dataset is related to publication http://dx.doi.org/10.20517/evcna.2024.49. This work was financially supported by the National Science Centre, Poland (no. 2021/43/D/NZ6/01464).
Project description:Lactobacillus rhamnosus GG has become one of the most widely marketed and studied probiotic strains. Several genes important for probiotic function have been identified, including the spaCBA-srtC1 gene cluster encoding pili, which have been shown to be important for certain of its probiotic properties. The spaCBA-srtC1 gene cluster has been reported to be unstable in L. rhamnosus GG isolated from liquid dairy products and therefore the present study examined the L. rhamnosus GG genome stability throughout an industrial production process from the original deposit to the freeze-dried products including intermediate fermentations and single colony isolates prepared from these samples. The results showed that the original deposit was identical to the reference ATCC and that the genome sequence stayed fully intact throughout the production process. No SNPs or larger genomic changes occurred in any of the samples throughout the production process and the spaCBA-srtC1 gene locus was fully conserved and intact in all 31 samples examined. In addition, phenotypic expression of pili was demonstrated using immune-gold labelling EM. The images showed that pili production was preserved throughout the production process and that the number of pili were consistent in all batches. The present study extends the scope of previous findings to an industrial setting and shows that the region around the spaCBA-srtC1 cluster exhibits high stability in L. rhamnosus GG in an industrial production process.