Project description:Somatic cells can be reprogrammed to a pluripotent state by nuclear transfer into oocytes, yet developmental arrest often occurs. While incomplete transcriptional reprogramming is known to cause developmental failure, reprogramming also involves concurrent changes in gene expression, cell cycle progression and nuclear structure. Here we study cellular reprogramming events in human and mouse nuclear transfer (NT) embryos prior to embryonic genome activation. We show that genetic instability marked by frequent chromosome segregation errors and DNA damage arise prior to, and independent of, transcriptional activity. These errors occur following transition through DNA replication and are repaired by BRCA1. In the absence of mitotic nuclear remodeling, DNA replication is delayed and errors are exacerbated in subsequent mitosis. These results demonstrate that independent of gene expression, cell type-specific features of cell cycle progression constitute a barrier sufficient to prevent the transition from one cell type to another during reprogramming.
Project description:Topoisomerase 1 (Top1) removes supercoils from DNA during replication and transcription, is critical for mitotic progression to the G1 phase, and ensures DNA topology. Tyrosyl-DNA phosphodiesterase 1 (TDP1) mediates the removal of trapped Top1-DNA covalent complexes (Top1ccs). Here, we identify CDK1-dependent phosphorylation of TDP1 at S61 residue during mitosis. TDP1 defective for S61 phosphorylation (TDP1S61A) is trapped on the mitotic chromosomes, triggering DNA damage and mitotic defects. Moreover, we show that Top1cc repair in mitosis occurs via MUS81-dependent mitotic DNA repair mechanism. Replication stress (RS) induced by Camptothecin (CPT) or Aphidicolin (APH) leads to TDP1S61A enrichment at common fragile sites (CFSs), which over-stimulates MUS81-dependent chromatid breaks, anaphase bridges, and micronuclei, ultimately culminating in 53BP1 nuclear bodies in the G1-phase. Our findings provide a new insight into the cell cycle-dependent regulation of TDP1 dynamics forthe repair of trapped Top1ccs during mitosis that prevents genomic instability following RS.
Project description:Many of the structural and mechanistic requirements of oocyte-mediated nuclear reprogramming remain elusive. Previous accounts that transcriptional reprogramming of somatic nuclei in mouse zygotes may be complete in 24-36 hours, far more rapidly than in other reprogramming systems, raise the question of whether the mere exposure to the activated mouse ooplasm is sufficient to enact reprogramming in a nucleus. We therefore prevented DNA replication and cytokinesis, which ensue after nuclear transfer, in order to assess their requirement for transcriptional reprogramming of the key pluripotency genes Oct4 (Pou5f1) and Nanog in cloned mouse embryos. Using transcriptome and allele-specific analysis, we observed that hundreds of mRNAs, but not Oct4 and Nanog, became elevated in nucleus-transplanted oocytes without DNA replication. Progression through the first round of DNA replication was essential but not sufficient for transcriptional reprogramming of Oct4 and Nanog, whereas cytokinesis and thereby cell-cell interactions were dispensable for transcriptional reprogramming. Responses similar to clones also were observed in embryos produced by fertilization in vitro. Our results link the occurrence of reprogramming to a previously unappreciated requirement of oocyte-mediated nuclear reprogramming, namely DNA replication. Nuclear transfer alone affords no immediate transition from a somatic to a pluripotent gene expression pattern unless DNA replication is also in place. This study is therefore a resource to appreciate that the quest for always faster reprogramming methods may collide with a limit that is dictated by the cell cycle.
Project description:DNA replication stress (DRS)-linked genomic instability has emerged as an important factor driving cancer development. To understand the mechanisms of DRS-associated genomic instability and phenotypic evolution, we mapped chromosomal alterations in a yeast strain with lowered expression of the replicative DNA polymerase δ. At a whole-genome level, we identified both hotspots of mitotic recombination and chromosome-specific aneuploidy dependent on decreased levels of DNA polymerase δ. The high rate of chromosome loss is likely a reflection of reduced DNA repair capacity in strains with low levels of DNA polymerase. Most recombinogenic DNA lesions were introduced during S or G2 phase, presumably as a consequence of broken replication forks.
Project description:It is well-known that embryonic stem cells (ESC) are much more sensitive to replication-induced stress than differentiated cells but the underpinning mechanisms are largely unknown. H2A.X, a minor variant of H2A, constitutes only 1-10% of the mammalian genome. H2A.X plays a well-known for role in the DNA damage response and maintaining stability in the genome, including the regions frequently experiencing replication stress, such as the fragile sites. Intriguingly, several recent studies have reported that H2A.X function is elevated in ESC; and others reported that H2A.X function is provoked during cellular reprogramming (in induced pluripotent stem cells, iPSC), indicating that increased proliferation during iPS may trigger replication stress and the H2A.X DNA damage response. However, several studies of genomic instability in iPSC led to different conclusions on this important issue. For example, frequent copy number variants (CNV) were reported at the genomic regions sensitive to replication stress, such as the fragile sites. On the other hand, another study reported the lack of genomic instability in mouse iPS clones that are able to generate “all-iPS” animals in tetraploid complementation assays (4N+ iPSC), indicative of a potential link between pluripotency and genome integrity. However, whether if high level genomic instability occurs in the 4N- iPSC iPSC clones at replication stress sensitive regions is unknown. Moreover, due to the lack of mechanistic insights on genome integrity maintenance, how pluripotency and genome integrity are connected remains elusive. Here we show that H2A.X plays unexpected roles in maintaining pluripotency and genome integrity in ESC and iPSC. In ESC, it is specially enriched at genomic regions sensitive to replication stress so that it protects genome integrity thereat. Faithful H2A.X deposition is critical for genome integrity and pluripotency in iPSC. H2A.X depositions in 4N+ iPSC clones faithfully recapitulate the ESC pattern and therefore, prevent genome instability. On the other hand, insufficient H2A.X depositions in 4N- iPSC clones at such regions lead to genome instability and defects in replication stress response and DNA repair, reminiscent of the H2A.X deficient ESC. In this study, male 129sv/C57 ES cell genomic DNA was used as reference control, to identify CNV sites in iPS cell lines. And also detect H2A.X (-/-) ES cell (129/Sv) CNVs, with the H2A.X(f/f) ES cell DNA (129/Sv) as control. DNA samples were compared on NimbleGen Mouse CGH 3x720K Whole-Genome Tiling Array (Build MM9).
Project description:It is well-known that embryonic stem cells (ESC) are much more sensitive to replication-induced stress than differentiated cells but the underpinning mechanisms are largely unknown. H2A.X, a minor variant of H2A, constitutes only 1-10% of the mammalian genome. H2A.X plays a well-known for role in the DNA damage response and maintaining stability in the genome, including the regions frequently experiencing replication stress, such as the fragile sites. Intriguingly, several recent studies have reported that H2A.X function is elevated in ESC; and others reported that H2A.X function is provoked during cellular reprogramming (in induced pluripotent stem cells, iPSC), indicating that increased proliferation during iPS may trigger replication stress and the H2A.X DNA damage response. However, several studies of genomic instability in iPSC led to different conclusions on this important issue. For example, frequent copy number variants (CNV) were reported at the genomic regions sensitive to replication stress, such as the fragile sites. On the other hand, another study reported the lack of genomic instability in mouse iPS clones that are able to generate “all-iPS” animals in tetraploid complementation assays (4N+ iPSC), indicative of a potential link between pluripotency and genome integrity. However, whether if high level genomic instability occurs in the 4N- iPSC iPSC clones at replication stress sensitive regions is unknown. Moreover, due to the lack of mechanistic insights on genome integrity maintenance, how pluripotency and genome integrity are connected remains elusive. Here we show that H2A.X plays unexpected roles in maintaining pluripotency and genome integrity in ESC and iPSC. In ESC, it is specially enriched at genomic regions sensitive to replication stress so that it protects genome integrity thereat. Faithful H2A.X deposition is critical for genome integrity and pluripotency in iPSC. H2A.X depositions in 4N+ iPSC clones faithfully recapitulate the ESC pattern and therefore, prevent genome instability. On the other hand, insufficient H2A.X depositions in 4N- iPSC clones at such regions lead to genome instability and defects in replication stress response and DNA repair, reminiscent of the H2A.X deficient ESC. Detect and compare different H2A.X deposition patterns in ES cells and iPS cells, with Illumina HiSeq 2000 and Illumina Genome Analyzer IIx
Project description:Mammalian oocytes have the ability to reset the transcriptional program of differentiated somatic cells into that of totipotent embryos through somatic cell nuclear transfer (SCNT). However, the mechanisms underlying SCNT-mediated reprogramming are largely unknown. To understand the mechanisms governing chromatin reprogramming during SCNT, we profiled DNaseI hypersensitive sites (DHSs) in donor cumulus cells and 1-cell stage SCNT embryos. To our surprise, the chromatin accessibility landscape of the donor cells is drastically changed to recapitulate that of the in vitro fertilization (IVF)-derived zygotes within 12 hours. Interestingly, this DHS reprogramming takes place even in the presence of a DNA replication inhibitor, suggesting that SCNT-mediated DHS reprogramming is independent of DNA replication. Thus, the study not only reveals the rapid and drastic nature of the changes in chromatin accessibility through SCNT, but also provides a DNA replication-independent model for studying cellular reprogramming.
Project description:The nuclear lamina constitutes more than a structural scaffold for the nucleus and plays a crucial role in protection of genomic integrity. Here we report that the loss of the lysine acetyl-transferase (KAT) MOF leads to nuclear architecture defects during interphase including micronuclei formation. We identify Lamin A/C, a major component of the nuclear lamina, to be an acetylation target of MOF. A point mutation in Lamin A phenocopies nuclear morphology defects observed upon Mof-deletion. Through single cell DNA sequencing, we reveal that either loss of Mof or Lamin A mutation result in extensive genomic instability, including chromothripsis. Our work establishes MOF-dependent Lamin acetylation as a key regulator of nuclear architecture maintenance in mammals.
Project description:Topoisomerase I (Top1) is a key enzyme acting at the interface between DNA replication, transcription and mRNA maturation. Here, we show that Top1 suppresses genomic instability in mammalian cells by preventing conflicts between transcription and DNA replication. Using DNA combing and ChIP-on-chip, we found that Top1-deficient cells accumulate stalled replication forks and chromosome breaks in S phase and that breaks occur preferentially at gene-rich regions of the genome. Strikingly, these phenotypes were suppressed by preventing the formation of RNA-DNA hybrids (R-loops) during transcription. Moreover, these defects could be mimicked by depletion of the splicing factor ASF/SF2, which interacts functionally with Top1. Taken together, these data indicate that Top1 prevents replication fork collapse by suppressing the formation of R-loops in an ASF/SF2-dependent manner. We propose that interference between replication and transcription represents a major source of spontaneous replication stress, which could drive genomic instability during early stages of tumorigenesis. Bed files contain the gamma-H2AX enrichment sites described in the paper