Project description:Cisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, subsequently resulting in a poor long-term prognosis. To model the onset of drug resistance, we measured gene expression alterations associated with cisplatin resistance. We treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After 5 cycles of drug selection, the isogenic drug-sensitive (parental A2780) and -resistant (Round5 A2780) cell lines were subjected to mRNA expression microarray analyses.
Project description:To determine the signaling networks that are dysregulated in platinum-resistant ovarian cancer, gene expression data were obtained from, and compared between, the ovarian cancer cell line, A2780, and its cisplatin-resistant derivative, A2780cis. Gene expression data from a cisplatin-sensitive ovarian cancer cell line (A2780) were collected and compared to gene expression data from a cisplatin-resistant cell line (A2780cis). 6 independent experiments were completed for both the sensitive and resistant cell lines.
Project description:The development of drug resistance is still a major impediment for the successful treatment of cancer, such as advanced stage ovarian cancer, which has a 5-year survival rate of only 30%. The molecular processes that contribute to resistance have been extensively studied, however, not much is known about the role of microRNAs. We compared microRNA expression profiles of three isogenic cisplatin sensitive and resistant cell line pairs. The only microRNA that was consistently downregulated (FDR = 0.000) in all resistant cell lines was miR-634. We investigated the effects of miR-634 modulation in ovarian cancer cell lines and patient derived tumor cells. Overexpression of miR-634 gave rise to a modest G1 phase block and enhanced apoptosis. Furthermore, miR-634 resensitized resistant ovarian cancer cell lines and patient derived tumor cells to cisplatin chemotherapy. Similarly, miR-634 enhanced the response of tumor cells to carboplatin and doxorubicin, but not to paclitaxel. We showed that miR-634 regulates cyclin D1 (CCND1), which is required for the G1-S phase transition, explaining the effects on the cell cycle. In addition, miR-634 repressed expression of GRB2, ERK2, RSK1 and RSK2, components of the Ras-MAPK pathway. Altogether, our findings suggest that miR-634 modulates several cancer relevant targets and therefore miR-634 is an attractive therapeutic candidate to resensitize chemotherapy resistant ovarian tumors. The miRNA expression profile was determined of three cisplatin sensitive/resistant cell line pairs (ovarian cancer cell line pair A2780/A2780 DDP; colon cancer cell line pair HCT8/HCT8 DDP; bladder cancer cell line pairT24/T24 DDP10).
Project description:We report the application of methyl-binding protein sequencing (MBD-seq) to global identify aberrant methylation between cisplatin sensitive and resistant ovarian cancer cell lines Detection of aberrant methylation states between cisplatin sensitive and resistant cell lines
Project description:Characterization of differential gene expression due to cisplatin resistance in human ovarian cancer spheroids by microarray analysis. In this dataset, we include the expression data obtained from cisplatin-sensitive and cisplatin-resistant human ovarian cancer spheroids. These data are used to obtain 1316 genes that are differentially expressed in response to cisplatin resistance.
Project description:The development of chemo-resistance has dramatically limited the clinical efficiency of platinum-based therapy. Although many resistant mechanisms have been demonstrated, genetic/molecular alterations responsible for drug resistance in the majority of clinical cases has not been identified. We analyzed three pairs of testicular germ cell tumor (TGCT) cell lines using Affymetrix expression microarrays to identify differential expressed genes. Then the expression of CCND1/CyclinD1, selected from the microarray analysis, was determined in cisplatin sensitive and resistance cancer samples including TGCTs, ovarian and prostate cancers by quantitative reverse transcription PCR analysis (qRT-PCR). Finally, we determined the gene knocked-down effect of CyclinD1. Expression microarray study revealed a limited number of differentially expressed genes across all three cell lines when comparing the parental and resistant cells. Among them, CyclinD1 was the most significantly differentially expressed gene. Importantly, we found that, in clinical TGCT samples, the overall expression level of cyclinD1 is higher in resistant cases compared to those sensitive samples (9/12 in the resistant group and only 3/8 in the sensitive group). We also found that cyclinD1 expressed dozens of fold higher in the resistant than in the sensitive ovarian cancer cell lines and dramatically overexpressed in prostate cancer. We re-sensitized the resistant cells by knocking-down cyclinD1. We demonstrated that deregulation of cyclinD1 is the major cause of TGCT cisplatin resistance and it may also be commonly involved in other human cancers. Combined cyclinD1 inhibition and cisplatin chemotherapy may be used clinically to treat the large number of cyclinD1 deregulated resistant tumors. RNA from three paired parental and cisplatin-resistant TGCT cell lines was extracted and analysed by Affymetrix gene expression microarray profiling (Human Genome U133 plus 2.0 arrays). Expression changes associated with the resistant phenotype were identified by comparing the three cisplatin-resistant derivatives to their parental counterparts.
Project description:Chemo-resistance to platinum such as cisplatin is critical in the treatment of ovarian cancer. Recent evidences have linked epithelial-mesenchymal transition (EMT) with the drug resistance as a contributing mechanism. The current study explored the connection between cellular responses to cisplatin with EMT in ovarian cancer. 46 ovarian carcinoma cell lines expression data with and without Cisplatin treatment.