Project description:In this study, we investigated the potential estrogenicity of soy protein isolate (SPI) as opposed to pure isoflavones (i.e., estradiol) in the prepubertal stage of testis development. Bioinformatics analysis of the microarray analysis indicate that rather than acting as a weak estrogen in the developing testis, SPI appears to act as a selective estrogen receptor modulator with little effect on reproductive processes.
Project description:There are concerns regarding possible reproductive toxicity from consumption of soy including an increased risk of endometriosis and endometrial cancer. We used global uterine gene expression profiles in adult ovariectomized (OVX) female rats assessed by RNAseq to examine the estrogenicity of soy protein isolate (SPI) and the potential for feeding SPI to alter estrogen signaling in the uterus. Rats were fed AIN93G diets made with casein (CAS) or SPI from postnatal day (PND) 30. Rats were OVX on PND 50 and infused with 17 beta-estradiol (E2) or vehicle. E2 increased uterine wet weight (P<0.05) and significantly altered expression of 2084 uterine genes. In contrast, SPI feeding had no effect on uterine weight and only altered expression of 177 genes. Overlap between E2 and SPI genes was limited to 69 genes (3%). GO analysis indicated significant differences in uterine biological processes affected by E2 and SPI and little evidence for recruitment of ER alpha to the promoters of ER-responsive genes after SPI feeding. The major E2 up-regulated uterine pathways were cancer pathways and extracellular organization. SPI feeding up-regulated uterine PPAR signaling and fatty acid metabolism. The combination of E2 and SPI feeding resulted in significant regulation of 715 fewer genes relative to E2 alone. In a separate experiment, the combination of E2 and SPI reversed the ability of E2 to induce uterine proliferation in response to the carcinogen dimethybenz(a)anthracene (DMBA). These data suggest SPI does not act as a weak estrogen in the uterus but appears to be a selective estrogen receptor modulator (SERM) interacting with a small sub-set of E2-regulated genes and to be anti-estrogenic in the presence of endogenous estrogens. Rat uterus mRNA of ovariectomized adult female rats subject to four different diets (Caseine, Caseine + E2, Soy and Soy+E2 ) were sequenced, in triplicate, in an Illumina GAIIx sequencer.
Project description:There are concerns regarding possible reproductive toxicity from consumption of soy including an increased risk of endometriosis and endometrial cancer. We used global uterine gene expression profiles in adult ovariectomized (OVX) female rats assessed by RNAseq to examine the estrogenicity of soy protein isolate (SPI) and the potential for feeding SPI to alter estrogen signaling in the uterus. Rats were fed AIN93G diets made with casein (CAS) or SPI from postnatal day (PND) 30. Rats were OVX on PND 50 and infused with 17 beta-estradiol (E2) or vehicle. E2 increased uterine wet weight (P<0.05) and significantly altered expression of 2084 uterine genes. In contrast, SPI feeding had no effect on uterine weight and only altered expression of 177 genes. Overlap between E2 and SPI genes was limited to 69 genes (3%). GO analysis indicated significant differences in uterine biological processes affected by E2 and SPI and little evidence for recruitment of ER alpha to the promoters of ER-responsive genes after SPI feeding. The major E2 up-regulated uterine pathways were cancer pathways and extracellular organization. SPI feeding up-regulated uterine PPAR signaling and fatty acid metabolism. The combination of E2 and SPI feeding resulted in significant regulation of 715 fewer genes relative to E2 alone. In a separate experiment, the combination of E2 and SPI reversed the ability of E2 to induce uterine proliferation in response to the carcinogen dimethybenz(a)anthracene (DMBA). These data suggest SPI does not act as a weak estrogen in the uterus but appears to be a selective estrogen receptor modulator (SERM) interacting with a small sub-set of E2-regulated genes and to be anti-estrogenic in the presence of endogenous estrogens.
Project description:Analysis of hormone effects on irradiated LBNF1 rat testes, which contain only somatic cells except for a few type A spermatgogonia. Rats were treated for 2 weeks with either sham treatment (group X), hormonal ablation (GnRH antagonist and the androgen receptor antagonist flutamide, group XAF), testosterone supplementation (GnRH antagonist and testosterone, group XAT), and FSH supplementation ((GnRH antagonist, androgen receptor antagonist, and FSH, group XAFF). Results provide insight into identifying genes in the somatic testis cells regulated by testosterone, LH, or FSH.
Project description:Combination therapy with estrogen and a selective estrogen receptor modulator (SERM) is a promising approach to safely alleviate important side effects related to estrogen deficiency in women at high risk for breast cancer. Data related to endometrial safety of estrogen+SERM co-therapies are limited, however. The primary goal of this study was to evaluate the endometrial profile of low-dose E2 and Tam alone and in combination.
Project description:This SuperSeries is composed of the following subset Series: GSE32443: Identical gene regulation patterns of triiodothyronine (T3) and selective thyroid hormone receptor modulator GC-1 [Affymetrix] GSE32444: Identical gene regulation patterns of triiodothyronine (T3) and selective thyroid hormone receptor modulator GC-1 [Illumina] Refer to individual Series
Project description:Combination therapy with estrogen and a selective estrogen receptor modulator (SERM) is a promising approach to safely alleviate important side effects related to estrogen deficiency in women at high risk for breast cancer. Data related to endometrial safety of estrogen+SERM co-therapies are limited, however. The primary goal of this study was to evaluate the endometrial profile of low-dose E2 and Tam alone and in combination. In this study 16 postmenopausal female cynomolgus macaques were randomized to receive placebo, low-dose micronized estradiol (E2, 0.25 mg/1800 kcal), the SERM tamoxifen (Tam, 20 mg/1800 kcal), or E2+Tam in a parallel-arm design. Endometrial samples were collected after 4 months of treatment and used for microarray analysis.
Project description:Tamoxifen, a selective estrogen receptor modulator, is widely used in research and clinically in patients. Tamoxifen injection (3 consecutive days, intraperitoneal, 5mg/20g mouse body weight) causes dramatic rearrangement of the gastric mucosa with loss of > 90% of PCs, a 6-fold increase in proliferation in stem/progenitor cells, and morphological changes in the ZCs in the bases of gastric-units. Time course of injection of high-dose tamoxifen. 3 mice were pooled for each condition.
Project description:Periodic fasting or modified fasting hold promise as strategies to enhance the activity of cancer treatments. We aimed at defining whether culture conditions that mimic the metabolic effects of fasting (1% serum and 0.5 g/L glucose) have an impact on the effects of tamoxifen, a broadly used selective estrogen receptor modulator, on the gene expression profile of MCF7 cells, a hormone receptor+ breast cancer cell line.