Project description:Campylobacter jejuni is the leading cause of campylobacteriosis in the developed world. Although most cases are caused by consumption of contaminated meat, a significant proportion is caused by consumption of contaminated water. Some C. jejuni isolates are better than others at surviving in water, which suggests that these strains are better adapted to transmission by water than others. The aim of this study is to investigate this phenomenon further. CFU counts and viability assays showed that strain 81116 survives better than strain 81-176 in a defined freshwater medium at 4°C. Comparative transcriptomic profiling using microarray revealed that these strains respond differently to water. This series presents the transcriptome of strain 81116 in water.
Project description:Campylobacter jejuni is the leading cause of campylobacteriosis in the developed world. Although most cases are caused by consumption of contaminated meat, a significant proportion is caused by consumption of contaminated water. Some C. jejuni isolates are better than others at surviving in water, which suggests that these strains are better adapted to transmission by water than others. The aim of this study is to investigate this phenomenon further. CFU counts and viability assays showed that strain 81116 survives better than strain 81-176 in a defined freshwater medium at 4°C. Comparative transcriptomic profiling using microarray revealed that these strains respond differently to water. This series presents the transcriptome of strain 81-176 in water.
Project description:Campylobacter jejuni is a widespread pathogen responsible for most of the food-borne gastrointestinal diseases in Europe. For pathogen control in the food industry, the use of natural antimicrobial molecules is a promising strategy to avoid antibiotic treatments. Isothiocyanates are natural antimicrobial compounds which also display anti-cancer activity. Several studies described the chemoprotective effect of isothiocyanates on eukaryotic cells, but the antimicrobial mechanism is still poorly understood. We investigated the early cellular response of C. jejuni to benzylisothiocyanate (BITC) by both transcriptomic and physiological (respirometry, ATP content measurements and isolations of aggregated proteins).
Project description:Campylobacter jejuni is susceptible to killing through exposure to blue light (405 nm) due to its poor ability to detoxify reactive oxygen species. This analysis aimed to elucidate the transcriptomic response of Campylobacter jejuni exposed to 405 nm light through illumina sequencing. C. jejuni was grown and exposed to 405nm light. Samples were taken at 15 min (7 J cm-1) and 30 min (14 J cm-1) after exposure. The data generated were compared to the transcriptome pre-exposure to determine the changes associated with blue light exposure
Project description:Campylobacter jejuni is the most prevalent cause of foodborne bacterial enteritis worldwide. This study aims at the characterisation of pathomechanisms and signalling in Campylobacter-induced diarrhoea in the human mucosa. During routine colonoscopy, biopsies were taken from patients suffering from campylobacteriosis. RNA-seq of colon biopsies was performed to describe Campylobacter jejuni-mediated effects. Mucosal mRNA profiles of acutely infected patients and healthy controls were generated by deep sequencing using Illumina HiSeq 2500. This data provide the basis for subsequent upstream regulator analysis.
Project description:Campylobacter jejuni is a human pathogen which causes campylobacteriosis, one of the most widespread zoonotic enteric diseases worldwide. Most cases of sporadic C. jejuni infection occur through the handling or consumption of undercooked chicken meat, or cross-contamination of other foods with raw poultry fluid. A common practice to combat Campylobacter infection is to treat chickens with chlorine which kills the microbe. This analysis aimed to elucidate the transcriptomic response of Campylobacter jejuni treated with hypochlorite through Illumina sequencing. C. jejuni was grown and treated with hypochlorite. Samples were taken 5, 20 and 45 min after treatment for RNAseq analysis.The data generated were compared to the transcriptome pre-exposure to determine C. jejuni's response to hypochlorite.
Project description:Campylobacter jejuni is a widespread pathogen responsible for most of the food-borne gastrointestinal diseases in Europe. For pathogen control in the food industry, the use of natural antimicrobial molecules is a promising strategy to avoid antibiotic treatments. Isothiocyanates are natural antimicrobial compounds which also display anti-cancer activity. Several studies described the chemoprotective effect of isothiocyanates on eukaryotic cells, but the antimicrobial mechanism is still poorly understood. We investigated the early cellular response of C. jejuni to benzylisothiocyanate (BITC) by both transcriptomic and physiological (respirometry, ATP content measurements and isolations of aggregated proteins). To characterize the transcriptomic early response to benzylisothiocyanate, C. jejuni NCTC11168 were grown in 100 ml flasks containing 25 ml of MEMM-NM-1 medium plus 20 mM sodium pyruvate. At mid-log phase, 2M-BM-5g/mL benzylisothiocyanate in ethanol, or the same volume of ethanol (control) was added to the flasks for 10 or 15 min prior to total RNA extraction and purification. Samples were then processed for microarray hybridization. Microarray data was acquired from two (10 minutes assay) or three (15 minutes assay) independent biological replicates and 6 to 9 technical replicates for each biological replicate (total number of measurement per gene = 42).