Project description:Metastatic melanoma is hallmarked by its ability to switch oncogenic MITF expression. Here we tested the impact of STAT3 on melanoma onset and progression in association with MITF expression levels. We established a mouse melanoma model for deleting Stat3 specifically in melanocytes with specific expression of human hyperactive NRASQ61K in an Ink4a deficient background. Mice with tissue specific Stat3 deletion showed an early onset of disease, but displayed significantly diminished lung metastasis. Whole genome expression profiling also revealed a reduced invasion phenotype, which was functionally confirmed in 3D melanoma model systems. Notably, loss or knockdown of STAT3 in mouse or human cells resulted in up-regulation of MITF and induction of cell proliferation. Mechanistically we show that STAT3 induced CEBPa/b expression was sufficient to suppress MITF transcription. Epigenetic analysis by ATAC-seq confirmed that STAT3 enabled CEBPa/b binding to the MITF enhancer region thereby silencing it. We conclude that STAT3 is a metastasis driver able to antagonize the MITF oncogene via direct induction of CEBP family member transcription facilitating RAS-RAF-driven melanoma metastasis.
Project description:While common mutations in potent proto-oncogenes and tumor suppressors induce melanoma formation, no recurrent mutations associated with the late stages of melanomagenesis have been identified. Instead, non-mutational mechanisms such as the deregulation of transcriptiona or epigenetic programs typically promote the malignant progression and metastasis of melanoma. We have previously identified the small MAFG transcription factor MAFG as a critical target of the melanoma suppressor miRNA miRN-29, prompting an in-depth evaluation of the role of MAFG in melanoma. MAFG expression is elevated in melanoma compared to melanocytes and increases with tumor stage. Ectopic expression of MAFG in human melanocytes and melanoma cells enhances proliferation in virto and promotes melanoma growth in vivo. Moreover, MAFG overexpression in BRAFV600E; PTEN+/- mice accelerated melanomagenesis, significantly shortening overall survival. Despite being a critical NRF2 dimerization partner, NRF2 was dispensable for the effects of MAFG. Moreover, MAFG overexpression in melanoma had no effect on the activity of NRF2 transcriptional reporters, nor did it induce transcriptional programs associated with NRF2. RNA sequencing and pathway analysis revealed MAFG-mediated effects on melanoma-associated processes such as pigmentation. Indeed, MAFG downregulated MITF and its target genes in the pigmentation pathway in melanoma cells. We next analyzed the connection between MAFG and MITF and found that MAFG binds to MITF to impede its binding to melanocytic differentiation genes, thus promoting a less differentiated and more aggressive phenotype. Our study establishes MAFG as a potent driver of melanoma development through the relocation of MITF.
Project description:The most critical stage in initiation of melanoma metastasis is the radial to vertical growth transition, yet the triggers of this transition remain elusive. We introduce a novel perspective, suggesting that the microenvironment drives melanoma metastasis independently of mutation acquisition. Here we examined the changes in microenvironment that occur during melanoma radial growth. We show that direct contact of melanoma cells with the remote epidermal layer triggers vertical invasion via Notch signaling activation, the latter serving to inhibit MITF function. Briefly, within the native Notch ligand-free microenvironment, MITF, the melanocyte lineage master regulator, binds and represses miR-222/221 promoter in an RBPJK-dependent manner. However, when radial growth brings melanoma cells into contact with distal differentiated keratinocytes that express Notch ligands, the activated Notch intracellular domain impairs MITF binding to miR-222/221 promoter. This de-repression of miR-222/221 expression triggers initiation of invasion. Our findings may direct novel prevention opportunities via targeting specific microenvironment. Two replicates of Notch-activated cells that were seeded on Delta-like-1 (DLL1) (2 ng/µl ) coated plates were compared to two replicates of cells without Notch activation. The goal of this experiment is to evaluate the changes of miRs expression in melanoma cells upon Notch signaling activation.
Project description:Malignant melanoma is an aggressive cancer known for its notorious resistance to most current therapies. The basic helix-loop-helix microphthalmia transcription factor (MITF) is the master regulator determining the identity and properties of the melanocyte lineage, and is regarded as a lineage-specific ‘oncogene’ that has a critical role in the pathogenesis of melanoma. MITF promotes melanoma cell proliferation, whereas sustained supression of MITF expression leads to senescence. By combining chromatin immunoprecipitation coupled to high throughput sequencing (ChIP-seq) and RNA sequen- cing analyses, we show that MITF directly regulates a set of genes required for DNA replication, repair and mitosis. Our results reveal how loss of MITF regulates mitotic fidelity, and through defective replication and repair induces DNA damage, ultimately ending in cellular senescence. These findings reveal a lineage-specific control of DNA replication and mitosis by MITF, providing new avenues for therapeutic intervention in melanoma. The identification of MITF-binding sites and gene- regulatory networks establish a framework for under- standing oncogenic basic helix-loop-helix factors such as N-myc or TFE3 in other cancers. 4 samples corresponding to genomic occupancy profiling of MITF (Cl8), PolII (501Mel), H3K4me3 501Mel). Anti-HA ChIP-seq on untagged cell line (501Mel) was used as a control.
Project description:The most critical stage in initiation of melanoma metastasis is the radial to vertical growth transition, yet the triggers of this transition remain elusive. We introduce a novel perspective, suggesting that the microenvironment drives melanoma metastasis independently of mutation acquisition. Here we examined the changes in microenvironment that occur during melanoma radial growth. We show that direct contact of melanoma cells with the remote epidermal layer triggers vertical invasion via Notch signaling activation, the latter serving to inhibit MITF function. Briefly, within the native Notch ligand-free microenvironment, MITF, the melanocyte lineage master regulator, binds and represses miR-222/221 promoter in an RBPJK-dependent manner. However, when radial growth brings melanoma cells into contact with distal differentiated keratinocytes that express Notch ligands, the activated Notch intracellular domain impairs MITF binding to miR-222/221 promoter. This de-repression of miR-222/221 expression triggers initiation of invasion. Our findings may direct novel prevention opportunities via targeting specific microenvironment.
Project description:In primary melanoma, the amount of VEGF-C expression and lymphangiogenesis predict the probability of metastasis to sentinel nodes, but conditions boosting VEGF-C expression in melanoma are poorly characterized. By comparative mRNA expression analysis of a set of 22 human melanoma cell lines, we found a striking negative correlation between VEGF-C and MITF expression, which was confirmed by data mining in GEO databases of human melanoma Affymetrix arrays. Moreover, in human patients, high VEGF-C, and low MITF levels in primary melanoma significantly correlated with the chance of metastasis. Pathway analysis disclosed the respective JNK- and p38/MAPK activities as being responsible for the inverse regulation of VEGF-C and MITF. Predominant JNK signaling results in a VEGF-Clow/MITFhigh phenotype, these melanoma cells are highly proliferative, show low mobility and are poorly lymphangiogenic. Predominant p38 signaling results in a VEGF-Chigh/MITFlow phenotype, corresponding to a slowly cycling, highly mobile, lymphangiogenic and metastatic melanoma.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Melanoma tumors are highly heterogeneous, comprising of different cell types that vary in their potential for growth and invasion. Heterogeneous expression of the Microphthalmia-associated Transcription Factor (MITF) and the POU domain transcription factor BRN2 (POU3F2) has been found in malignant melanoma. Changing expression of these transcription factors as the disease progresses has been linked to the metastatic mechanism of phenotype switching. We therefore investigated the effects of MITF and BRN2 expression in melanoma growth and metastasis. Depletion of MITF resulted in a cell population that had a slowed cell cycle progression, was less invasive in vitro and had hindered tumor and metastasis forming ability in mouse xenograft studies. BRN2 depletion left a cell population with intact proliferation and invasion in vitro; however metastatic growth was significantly reduced in the mouse xenograft model. These results suggest that the proliferative population within melanoma tumors express MITF, and both MITF and BRN2 are important for metastatic growth in vivo. This finding highlights the importance of BRN2 and MITF expression in development of melanoma metastasis.
Project description:Phenotypic and metabolic heterogeneity within tumors is a major barrier to effective cancer therapy. Yet how metabolism is implicated in specific phenotypes, and whether lineage-restricted mechanisms control key metabolic vulnerabilities remains poorly understood. In melanoma, down-regulation of the lineage addiction oncogene Microphthalmia-associated Transcription Factor (MITF) is a hallmark of the proliferative-to-invasive phenotype switch, though how MITF promotes proliferation and suppresses invasion is poorly defined. Here we show that MITF is a lineage restricted activator of the key lipogenic enzyme stearoyl-CoA desaturase (SCD), and that SCD is required for MITFHigh melanoma cell proliferation. By contrast MITFLow cells are insensitive to SCD inhibition. Significantly, the MITF-SCD axis suppresses metastasis, inflammatory signalling, and an ATF4-mediated feedback-loop that maintains dedifferentiation. Our results reveal that MITF is a lineagespecific regulator of metabolic reprogramming, whereby fatty acid composition is a driver of melanoma phenotype-switching, and highlight that cell phenotype dictates response to drugs targeting lipid metabolism.