Project description:Systemic sclerosis is associated with skin fibrosis thought mediated by TGFb. This open label clinical trial examines the effect of TGFb inhibition on skin gene expression. Patients 1-9 received two doses 1 mg/kg dose of fresolimumab at baseline and 3 weeks; patients 10-19 received a single 5 mg/kg dose Patients with diffuse cutaneous systemic sclerosis within 2 years of first raynauds had skin biopsies before treatment and the 3-4 weeks, 7 weeks and 24 weeks after treatment with fresolimumab
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:RNA from skin biopsies from 48 patients in the Prospective Registry for Early Systemic Sclerosis (PRESS) cohort (mean disease duration 1.3 years) and 33 matched healthy controls was examined by nextGen RNA sequencing
Project description:Systemic sclerosis is a connective tissue disease affecting skin and internal organs, characterized by a triad of inflammation, vasculopathy and progressive fibrosis, due to deposition of mainly type I collagen. Out of the intricate mechanisms involved in the pathogenesis of the disease, evidence indicates that TGFbeta signaling plays a central role in mediating the effects of several pro-fibrotic effectors. In addition, TGFbeta is induced by hypoxia in cultured fibroblasts, an observation suggesting a role for this cytokine in linking vasculopathy and fibrosis in the disease. Not surprisingly, TGFbeta and Wnt signaling are among the most prevalent pathways found in global gene expression studies performed on systemic sclerosis skin biopsies. In this perspective, modulation of TGFbeta activity remains a top therapeutic target in systemic sclerosis drug development. We recently performed whole-body magnetic resonance imaging (MRI) studies in systemic sclerosis patients, and evidenced deep connective tissue infiltrates surrounding tendons in patients with active disease, and tendon friction rubs. Tenosynovitis and arthritis were also found by MRI in one third of the patients. We performed tenosynovial biopsies in patients with clinically active tenosynovitis, in order to evaluate whether such samples would provide additional information on disease mechanisms. Here, we report that these samples are characterized by the over-expression of genes involved in fibrosis, TGFbeta/Wnt signaling, chemokines and cytokines, but also by the concurrent over-expression of several ubiquitin-specific peptidases (USPs). Among the USPs overexpressed in systemic sclerosis tenosynovial biopsies, USP15 is known to specifically deubiquitinate SMAD3, and the TGFbeta Receptor 1. These results triggered us to perform additional experiments in order to test whether USP15 overexpression plays a role in the pathogenesis of systemic sclerosis via decreased ubiquitin-mediated degradation of proteins involved in TGFbeta signaling.
Project description:We used DNA microarrays to characterize gene expression patterns in skin biopsies from individuals with a diagnosis of systemic sclerosis with diffuse scleroderma and compared those to the patterns of gene expression seen in biopsies from normal, unaffected individuals.