Project description:Pressure overload induces a transition from cardiac hypertrophy to heart failure, but its underlying mechanisms remain elusive. Here we reconstruct a trajectory of cardiomyocyte remodeling and clarify distinct cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure, by integrating single-cardiomyocyte transcriptome with cell morphology, epigenomic state and heart function. During early hypertrophy, cardiomyocytes activate mitochondrial translation/metabolism genes, whose expression is correlated with cell size and linked to ERK1/2 and NRF1/2 transcriptional networks. Persistent overload leads to a bifurcation into adaptive and failing cardiomyocytes, and p53 signaling is specifically activated in late hypertrophy. Cardiomyocyte-specific p53 deletion shows that cardiomyocyte remodeling is initiated by p53-independent mitochondrial activation and morphological hypertrophy, followed by p53-dependent mitochondrial inhibition, morphological elongation, and heart failure gene program activation. Human single-cardiomyocyte analysis validates the conservation of the pathogenic transcriptional signatures. Collectively, cardiomyocyte identity is encoded in transcriptional programs that orchestrate morphological and functional phenotypes.
Project description:Pressure overload induces a transition from cardiac hypertrophy to heart failure, but its underlying mechanisms remain elusive. Here we reconstruct a trajectory of cardiomyocyte remodeling and clarify distinct cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure, by integrating single-cardiomyocyte transcriptome with cell morphology, epigenomic state and heart function. During early hypertrophy, cardiomyocytes activate mitochondrial translation/metabolism genes, whose expression is correlated with cell size and linked to ERK1/2 and NRF1/2 transcriptional networks. Persistent overload leads to a bifurcation into adaptive and failing cardiomyocytes, and p53 signaling is specifically activated in late hypertrophy. Cardiomyocyte-specific p53 deletion shows that cardiomyocyte remodeling is initiated by p53-independent mitochondrial activation and morphological hypertrophy, followed by p53-dependent mitochondrial inhibition, morphological elongation, and heart failure gene program activation. Human single-cardiomyocyte analysis validates the conservation of the pathogenic transcriptional signatures. Collectively, cardiomyocyte identity is encoded in transcriptional programs that orchestrate morphological and functional phenotypes.
Project description:An important event in the pathogenesis of heart failure is the development of pathological cardiac hypertrophy. In cultured cardiac cardiomyocytes, the transcription factor Gata4 is required for agonist-induced cardiomyocyte hypertrophy. We hypothesized that in the intact organism Gata4 is an important regulator of postnatal heart function and of the hypertrophic response of the heart to pathological stress. To test this hypothesis, we studied mice heterozygous for deletion of the second exon of Gata4 (G4D). At baseline, G4D mice had mild systolic and diastolic dysfunction associated with reduced heart weight and decreased cardiomyocyte number. After transverse aortic constriction (TAC), G4D mice developed overt heart failure and eccentric cardiac hypertrophy, associated with significantly increased fibrosis and cardiomyocyte apoptosis. Inhibition of apoptosis by overexpression of the insulin-like growth factor 1 receptor prevented TAC-induced heart failure in G4D mice. Unlike WT-TAC controls, G4D-TAC cardiomyocytes hypertrophied by increasing in length more than width. Gene expression profiling revealed upregulation of genes associated with apoptosis and fibrosis, including members of the TGF? pathway. Our data demonstrate that Gata4 is essential for cardiac function in the postnatal heart. After pressure overload, Gata4 regulates the pattern of cardiomyocyte hypertrophy and protects the heart from load-induced failure. Experiment Overall Design: We reasoned that if Gata4 was a crucial regulator of pathways necessary for cardiac hypertrophy, then modest reductions of Gata4 activity should result in an observable cardiac phenotype. To test this hypothesis, we used gene targeted mice that express reduced levels of Gata4. We characterized these mice at baseline and after pressure Experiment Overall Design: overload.
Project description:Agonist-induced cardiac hypertrophy in TG1306/1R transgenic mice with cardiac angiotensin II overproduction leads to a gradual transition from a compensatory hypertrophic state to heart failure. To gain insight into the molecular mechanisms that play a role in maintaining cardiac integrity in the diseased heart, we performed a comparative study of gene expression between wild-type (WT) and transgenic (TG) hearts using microarray analysis. TG1306/1R transgenics were separated into two phenotypic groups (hypertrophic and dilated) based on morphological parameters (cardiac weight index and histology) and either a moderate (hypertrophic) or a high (dilated) upregulation of molecular markers for hypertrophy and failure, and compared to age and sex-matched wild-types. In this series, twelve 60 week old male TG1306/1R mice were separated into 3 groups: WT1-4= Four Wild-types TG1306/1R littermates genetically negative for the transgene (-/-) Hyp1-4= Four TG1306/1R mice heterozygote for the transgene (-/+) and developing a concentric hypertrophic phenotype* Dil1-4 = Four TG1306/1R mice heterozygote for the transgene (-/+) and developing a dilated cardiac phenotype* This series contains 4 biological replicates for the following triangulation: WT is compared to Hyp, WT is compared to Dil, and Hyp is compared to Dil. * For further information read: Domenighetti AA, Wang Q, Egger M, Richards SM, Pedrazzini T, Delbridge LM. Angiotensin II-mediated phenotypic cardiomyocyte remodeling leads to age-dependent cardiac dysfunction and failure. Hypertension. 2005 Aug;46(2):426-32. [PMID: 15998712]
Project description:An important event in the pathogenesis of heart failure is the development of pathological cardiac hypertrophy. In cultured cardiac cardiomyocytes, the transcription factor Gata4 is required for agonist-induced cardiomyocyte hypertrophy. We hypothesized that in the intact organism Gata4 is an important regulator of postnatal heart function and of the hypertrophic response of the heart to pathological stress. To test this hypothesis, we studied mice heterozygous for deletion of the second exon of Gata4 (G4D). At baseline, G4D mice had mild systolic and diastolic dysfunction associated with reduced heart weight and decreased cardiomyocyte number. After transverse aortic constriction (TAC), G4D mice developed overt heart failure and eccentric cardiac hypertrophy, associated with significantly increased fibrosis and cardiomyocyte apoptosis. Inhibition of apoptosis by overexpression of the insulin-like growth factor 1 receptor prevented TAC-induced heart failure in G4D mice. Unlike WT-TAC controls, G4D-TAC cardiomyocytes hypertrophied by increasing in length more than width. Gene expression profiling revealed upregulation of genes associated with apoptosis and fibrosis, including members of the TGF? pathway. Our data demonstrate that Gata4 is essential for cardiac function in the postnatal heart. After pressure overload, Gata4 regulates the pattern of cardiomyocyte hypertrophy and protects the heart from load-induced failure. Keywords: genetic modification, pressure overload stress response
Project description:Heart failure is driven by the interplay between master regulatory transcription factors and dynamic alterations in chromatin structure. Coordinate activation of developmental, inflammatory, fibrotic and growth regulators underlies the hallmark phenotypes of pathologic cardiac hypertrophy and contractile failure. While transactivation in this context is known to be associated with recruitment of histone acetyl-transferase enzymes and local chromatin hyperacetylation, the role of epigenetic reader proteins in cardiac biology is unknown. We therefore undertook a first study of acetyl-lysine reader proteins, or bromodomains, in heart failure. Using a chemical genetic approach, we establish a central role for BET-family bromodomain proteins in gene control during the evolution of heart failure. BET inhibition suppresses cardiomyocyte hypertrophy in a cell-autonomous manner, confirmed by RNA interference in vitro. Following both pressure overload and neurohormonal stimulation, BET inhibition potently attenuates pathologic cardiac remodeling in vivo. Integrative transcriptional and epigenomic analyses reveal that BET proteins function mechanistically as pause-release factors critical to activation of canonical master regulators and effectors that are central to heart failure pathogenesis. Specifically, BET bromodomain inhibition in mice abrogates pathology-associated pause release and transcriptional elongation, thereby preventing activation of cardiac transcriptional pathways relevant to the gene expression profile of failing human hearts. This study implicates epigenetic readers in cardiac biology and identifies BET co-activator proteins as therapeutic targets in heart failure. ChIP-Seq of mouse heart tissues from mice induced with heart failure and treated with JQ1 BET bromodomain inhibitor
Project description:In humans, cardiac hypertrophy is the principal risk factor for the development of overt heart failure and sudden cardiac death from lethal arrhythmias. Although aberrant reactivation of fetal² gene programs is intricately linked to maladaptive hypertrophy of postnatal cardiomyocytes, loss of cardiac function and heart failure, the transcription factors driving these gene programs remain ill defined. We report that the basic helix-loop-helix (bHLH) transcription factor dHAND/Hand2 is re-expressed in the mammalian postnatal myocardium in response to stress signaling. Interestingly, mutant mice overexpressing Hand2 in otherwise healthy ventricular myocytes developed a phenotype of pathological hypertrophy. In contrast, conditional gene-targeted Hand2 mice demonstrated a marked resistance to pressure overload-induced hypertrophy, fibrosis, ventricular dysfunction and induction of a fetal gene program. These data suggest a critical role for the Hand2 transcription factor during hypertrophic remodeling and heart failure. To gain more mechanistically insight in the processes underlying heart failure, we here identified Hand2 target genes by microarray gene expression profiling. RNA samples were collected 4 weeks after sham or TAC surgery (to induce pressure overload) of both tamoxifen-treated Hand2f/f (WT) and MCM-Hand2f/f (KO) mice.
Project description:Background: The protein kinase PKN2 is required for embryonic development, and PKN2 knockout mice die as a result of failure in expansion of mesoderm tissues, cardiac development and neural tube closure. In the adult, cardiomyocyte PKN2 and PKN1 (in combination) are required for cardiac adaptation to pressure-overload. The role of PKN2 in contractile cardiomyocytes during development and its role in the adult heart remain to be fully established. Methods: We used mice with cardiomyocyte-directed knockout of PKN2 or global PKN2 haploinsufficiency. Cardiac function and dimensions were assessed with high resolution episcopic microscopy, MRI, micro-CT and echocardiography. Biochemical and histological changes were assessed. Results: Cardiomyocyte-directed PKN2 knockout embryos displayed striking abnormalities in the compact myocardium, with frequent myocardial clefts and diverticula, ventricular septal defects and abnormal heart shape. The sub-Mendelian homozygous knockout survivors developed cardiac failure. RNASeq data showed upregulation of PKN2 in patients with dilated cardiomyopathy, suggesting an involvement in adult heart disease. Given the rarity of homozygous survivors with cardiomyocyte-specific deletion of PKN2, this was explored using mice with constitutive heterozygous PKN2 knockout. Cardiac hypertrophy resulting from hypertension induced by angiotensin II was reduced in haploinsufficient PKN2 mice relative to wild-type littermates, with suppression of cardiomyocyte hypertrophy and cardiac fibrosis. Conclusions: Cardiomyocyte PKN2 is essential for heart development and formation of compact myocardium, and is also required for cardiac hypertrophy in hypertension. Thus, PKN signalling may offer therapeutic options for managing congenital and adult heart diseases.