Project description:Chronic viral infections are difficult to treat and new approaches, particularly those involving enhancing immune responses are needed. Herpes simplex virus (HSV) establishes latency, reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and activated T cells require increased metabolism of glutamine for their proliferation. We found that treatment of HSV-1 latently infected mice and HSV-2 infected guinea pigs with supplemental oral glutamine reduced virus reactivation. Transcriptome analysis of mice treated with glutamine showed that several interferon (IFN)-γ inducible genes were upregulated. Unlike wild-type mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in IFN-γ knock-out mice. Mice treated with glutamine had higher numbers of HSV-specific IFN-γ producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.
Project description:Chronic viral infections are difficult to treat and new approaches, particularly those involving enhancing immune responses are needed. Herpes simplex virus (HSV) establishes latency, reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and activated T cells require increased metabolism of glutamine for their proliferation. We found that treatment of HSV-1 latently infected mice and HSV-2 infected guinea pigs with supplemental oral glutamine reduced virus reactivation. Transcriptome analysis of mice treated with glutamine showed that several interferon (IFN)-γ inducible genes were upregulated. Unlike wild-type mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in IFN-γ knock-out mice. Mice treated with glutamine had higher numbers of HSV-specific IFN-γ producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.
Project description:Chronic viral infections are difficult to treat and new approaches, particularly those involving enhancing immune responses are needed. Herpes simplex virus (HSV) establishes latency, reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and activated T cells require increased metabolism of glutamine for their proliferation. We found that treatment of HSV-1 latently infected mice and HSV-2 infected guinea pigs with supplemental oral glutamine reduced virus reactivation. Transcriptome analysis of mice treated with glutamine showed that several interferon (IFN)-γ inducible genes were upregulated. Unlike wild-type mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in IFN-γ knock-out mice. Mice treated with glutamine had higher numbers of HSV-specific IFN-γ producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.
Project description:How type I / II interferons (IFNs) prevent periodic re-emergence of latent pathogens in tissues of diverse cell-types remains unknown. Using homogenous neuron cultures latently-infected with herpes simplex virus (HSV), we show that extrinsic type I or II IFN act directly on neurons to induce unique gene expression signatures and inhibit the reactivation-specific burst of viral genome-wide transcription called Phase I. Surprisingly, IFNs suppressed reactivation only during a limited period early in Phase I preceding productive virus growth. Sensitivity to type II IFN was selectively lost if viral ICP0, which normally accumulates later in Phase I, was expressed prior to reactivation. Thus, IFNs suppress reactivation by preventing initial expression of latent genomes but are ineffective once Phase I viral proteins accumulate and limit IFN action. This demonstrates that inducible reactivation from latency is only transiently sensitive to IFNs. Moreover, it illustrates how latent pathogens escape host immune control to periodically replicate by rapidly deploying an interferon-resistant state.
Project description:Transcription profiling by array of human malignant peripheral nerve sheath tumor cells after infection with herpes simplex virus G207
Project description:The purpose of this study was to determine which genes are differentially regulated virus infection in RAW264.7 cells. Cells were infected with Vesicular Stomatitis Virus (VSV) or herpes simplex virus 1 (HSV-1) for 6h. Then the differentially regulated genes were analyzed, focusing on F-box proteins and E3 ubiquitin ligases. RAW264.7 cells were infected with Vesicular Stomatitis Virus (VSV, MOI=1) or herpes simplex virus 1 (HSV-1, MOI=5) for 6h. Equal amounts of RNA were assayed for gene expression using Affymetrix mouse 430 2.0 arrays.
Project description:The purpose of this study was to determine what are the effects of Src deficiency on innate antiviral response upon virus infection in RAW264.7 cells. Wild type and Src-/- RAW264.7 cells were infected with vesicular stomatitis virus (VSV) or herpes simplex virus 1 (HSV-1) for 6h. Then the differentially regulated genes were analyzed. Wild type and Src-/- RAW264.7 cells were infected with vesicular stomatitis virus (VSV, MOI=1) or herpes simplex virus 1 (HSV-1, MOI=5) for 6h. Equal amounts of RNA were assayed for gene expression using Affymetrix mouse 430 2.0 arrays.