Project description:Gene content comparison of control C. jejuni subsp. jejuni strain 11168 which colonizes and causes disease in C57BL/6 IL-10-/- mice versus C. jejuni strains D6844, D6845, D6846, D6847, D6848, D6849, D0121, D0835, D2586, D2600,33560 and NW in the C57BL/6 IL-10-/- mice. Keywords: DNA/DNA comparison
Project description:Gene content comparison of control C. jejuni subsp. jejuni strain 11168 which colonizes and causes disease in C57BL/6 IL-10-/- mice versus C. jejuni strains D6844, D6845, D6846, D6847, D6848, D6849, D0121, D0835, D2586, D2600,33560 and NW in the C57BL/6 IL-10-/- mice. Keywords: DNA/DNA comparison Two genome comparison of disease strain versus non disease strain of C.j., 4 Biological replicates - 2 of which were dye swaps
Project description:Campylobacter jejuni is the leading cause of campylobacteriosis in the developed world. Although most cases are caused by consumption of contaminated meat, a significant proportion is caused by consumption of contaminated water. Some C. jejuni isolates are better than others at surviving in water, which suggests that these strains are better adapted to transmission by water than others. The aim of this study is to investigate this phenomenon further. CFU counts and viability assays showed that strain 81116 survives better than strain 81-176 in a defined freshwater medium at 4°C. Comparative transcriptomic profiling using microarray revealed that these strains respond differently to water. This series presents the transcriptome of strain 81116 in water.
Project description:Comparsion of proteomes of Campylobacter fetus subsp. fetus to compare protein level via iBAQ analysis, expression (by LFQ) and coverage between Campylobacter fetus subsp. fetus strain82-40 vs Campylobacter fetus subsp. fetus strain ATCC 27374
Project description:Campylobacter jejuni is the leading cause of campylobacteriosis in the developed world. Although most cases are caused by consumption of contaminated meat, a significant proportion is caused by consumption of contaminated water. Some C. jejuni isolates are better than others at surviving in water, which suggests that these strains are better adapted to transmission by water than others. The aim of this study is to investigate this phenomenon further. CFU counts and viability assays showed that strain 81116 survives better than strain 81-176 in a defined freshwater medium at 4°C. Comparative transcriptomic profiling using microarray revealed that these strains respond differently to water. This series presents the transcriptome of strain 81-176 in water.
Project description:Campylobacter jejuni is a major zoonotic pathogen transmitted to humans via the food chain. C. jejuni is prevalent in chickens, a natural reservoir for this pathogenic organism. Due to the importance of macrolide antibiotics in clinical therapy of human campylobacteriosis, development of macrolide resistance in Campylobacter has become a concern for public health.To facilitate understanding the molecular basis associated with the fitness difference between Erys and Eryr Campylobacter, we compared the transcriptomes between ATCC 700819 and its isogenic Eryr transformant T.L.101 using DNA microarray.