Project description:Purpose: To identify miRNA expresssion profiles in E9.5 mouse embryonic heart Methods: Total RNA of E9.5 heart were extracted with TRIZOL, miRNA deep sequencing were performed in using Illumina Hiseq 2500, SE50 (RIBOBIO, http://www.ribobio.com/), producing over 10 million reads from each sample. Clean reads were mapped to mouse genome (mm9), using miRDeep2 Results: MiRNAs that were highly expressed in E9.5 embryonic heart were identified Conclusions: Results provide insight into the role of miRNAs function in E9.5 embryonic heart development
Project description:Purpose: To compare the E9.5 Dgcr8 conditional knockout embryonic heart cells transfected with NC miRNA and miR-541 mimics Methods: In vitro cultured E9.5 Dgcr8 conditional KO heart cells transfected with miR-541-5p and NC miRNA were extracted with TRIZOL 48hrs after transfection, and 10ng total RNA was reverse transcribed and amplified by Smart-seq2 protocol as described (Picelli et al., 2014). Duplicated biological samples were analyzed using Illumina HiSeqX10, Clean reads were mapped to mouse genome (mm9) using BWA software. Results: Genes differentially expressed in E9.5 Dgcr8 cKO embryonic heart cells transfected with NC miRNA and miR-541 were identified. Conclusions: miRNA-541 significantly changes the gene expression profiles of E9.5 Dgcr8 cKO embryonic heart cells and promote the cardiac function
Project description:To describe the protein profile in hippocampus, colon and ileum tissue’ changing after the old faeces transplants, we adopted a quantitative label free proteomics approach.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other