Project description:Expansins are a superfamily of proteins mainly present in plants that are also found in bacteria, fungi and amoebozoa. Expansin proteins bind the plant cells wall and relax the cellulose microfibrils without any enzymatic action. The evolution of this kind of proteins exposes a complex pattern of horizontal gene transferences that makes difficult to determine the precise origin of non-plant expansins. We performed a genome-wide search of inter-domain horizontal gene transfer events using Streptomyces species and found a plant-like expansin in the Streptomyces acidiscabies proteome. This finding leads us to study in deep the origin and the characteristics of this peculiar protein, also present in the species Kutzneria sp.744. Using phylogenetic analyses, we determine that indeed S. acidiscabies and Kutzneria sp.744 expansins are located inside the plants expansins A clade. Using secondary and tertiary structural information, we observed that the electrostatic potentials and the folding of expansins are similar, independently of the proteins' origin. Using all this information, we conclude that S. acidiscabies and Kutzneria sp.744 expansins have a plant origin but differ from plant and bacterial canonical expansins. This finding suggests that the experimental research around this kind of expansins can be promissory in the future.
Project description:We tested if Brd2 inhibitor ABBV-744 could reduce SARS-CoV-2 infection in Syrian Hamsters. Three days post-infection, the lungs of hamsters were harvested and subjected to RNA-seq. Infected, but untreated, hamsters showed marked up-regulation of a number of genes including ISGs when compared to uninfected controls. In contrast, hamsters treated with ABBV-744 showed a down-regulation of ISG levels, confirming ABBV-744 activity. Thus, Brd2 inhibition can decrease SARS-CoV-2 infection in Syrian Hamsters.