Project description:To investigate the expression profiles of miRNA in atherosclerotic plaques, the global features of miRNAs expression of three normal coronary artery tissues sample pools and three sample pools of advanced atherosclerosis plaques of coronary artery were studied using microarray technology,
Project description:The rupture of unstable atherosclerotic plaques, leading to debilitating or fatal thrombotic events, is a major health burden worldwide. Limited understanding as to the molecular drivers of plaque instability and rupture hinders efforts in diagnosis and treatment prior to thrombotic events. Utilising an advanced pre-clinical mouse model (Tandem stenosis (TS) model), which presents human-like unstable atherosclerotic disease, we apply high-end omic methods to characterize the molecular signatures associated with plaque instability in atherosclerotic arteries. Through quantitative proteomic profiling, we depict unique proteome signatures of unstable plaques compared to stable plaques and healthy arteries. Coupled with single-cell RNA-sequencing of leukocytes, we describe the heterodimer complex S100a8/S100a9 as unique to unstable plaque, with neutrophils implicated as the transcriptional drivers of S100a8/a9 expression. We confirm S100a9 expression in human carotid atherosclerotic plaques and we further utilise the TS pre-clinical model to pharmacologically inhibit S100a8/S100a9, resulting in plaque stabilisation. Thus, we establish the TS model as a sophisticated translational tool for the profiling of unstable atherosclerotic plaques and demonstrate that unstable and stable atherosclerosis are highly different disease entities.
Project description:A microarray analysis of advanced human atherosclerotic carotid artery plaques (equal or over 70% stenosis, NASCET criteria) from radiologically confirmed ipsilateral stroke patients (stroke-susceptible plaques, n=12) compared with carotid plaques collected from clinically asymptomatic patients with clear brain imaging (asymptomatic plaques, n=9) with equivalent conventional risk factors and severity of carotid stenosis.
Project description:This SuperSeries is composed of the following subset Series: GSE23303: Gene expression profiling of human atherosclerotic plaque: Laser capture microscopy of smooth muscle cells and macrophages GSE23304: Gene expression profiling of human atherosclerotic plaque: 101 peripheral plaques GSE24495: Gene expression profiling of human atherosclerotic plaque: Carotid plaque GSE24702: Gene expression profiling of human atherosclerotic plaque: 290 peripheral plaques Refer to individual Series
Project description:Atherosclerotic plaques belong to the common vascular disease in the aged, which rupture will lead to acute thromboembolic diseases, the major reason for fatal cardiovascular events. Accumulating evidence indicates that lncRNAs exert critical functions in atherosclerosis. To identify novel astherosclerotic plaques-relevant lncRNAs, four specimens of carotid atherosclerotic plaque were collected, and endovascular tissue one centimeter far from the carotid atherosclerotic plaque was taken as a control group, we performed lncRNA microarray analysis using Affymetrix Human OElncRNA