Project description:To explore the mechanism of Kindlin-2 regulating invasion and metastasis of human Hepatocellular carcinoma, we performed gene expression microarray analysis on Kindlin-2 knockdown LM3 cells and the control cells to compare the gene expression levels between the two groups.
Project description:Kindlin-2, an integrin-interacting FERM-domain-containing protein, has been known to play critical roles for tumor progression. However, the role of Kindlin-2 in renal cell carcinoma (RCC) progression has not been reported. We aim to investigate the role of Kindlin-2 in the progression of RCC and the underlying mechanisms. To uncover the related pathway in which Kindlin-2 is involved to promote clear cell renal cell carcinoma progression, ACHN control and Kindlin-2-depleting cells were analyzed by Affymetrix GeneChip human Gene 1.0 ST Arrays. ACHN cells were transfected with control short hairpin RNA (shRNA) or Kindlin-2 shRNA. ACHN control and Kindlin-2-depleting cells cDNAs were hybridized to Affymetrix GeneChip Human Gene 1.0 ST arrays. Data were analyzed by Expression Console 1.4.1.
Project description:Kindler syndrome (KS) is a rare genodermatosis resulting from loss-of-function mutations in FERMT1, the gene that encodes Kindlin-1. KS patients have a high propensity to develop aggressive and metastatic cutaneous squamous cell carcinoma (SCC). In this study, we show that loss of Kindlin-1 in a mouse model of cutaneous SCC leads to increased migration, invasion and degradation of collagen. Loss of Kindlin-1 increased tumor growth in vivo and in 3D spheroids, which was associated with the development of a hypoxic tumor environment and increased glycolysis. One of the most highly upregulated genes in Kindlin-1-depleted tumors was Mmp13, and the increased expression of MMP13 was responsible for driving the increased migration and invasion of the Kindlin-1-depleted SCC cells. These results provide evidence that Kindlin-1 loss in SCC can promote migration and invasion through the upregulation of MMP13, and offer novel insights into how Kindlin-1 loss leads to the development of a hypoxic environment that is permissive for tumor growth.
Project description:Massive studies have been applied in exploring the factors driving pathogenesis, progression and metastasis of hepatocellular carcinoma. However these studies were inefficient in disclosing the fundamental mechanism which promotes hepatocellular carcinoma. Zinc and zinc-finger proteins have been important in extensive biological processes for human. Supervised machine learning using bootstrapping algorithm on GEO and TCGA transcriptome data for hepatocellular carcinoma identified zinc-finger like protein ZFPL1 as potential hepatocellular carcinoma driver. Further studies validated ZFPL1 significantly promoted progression and metastasis of hepatocellular carcinoma. We performed RNA-seq on si-ZFPL1 xenograft tissue and identified CLDN3 as potential target gene for ZFPL1. Further experiments confirmed interaction between ZFPL1 and WNT signaling pathway markers. Conclusively, these studies indicated the effect and mechanism of ZFPL1 on promoting progression and metastasis of hepatocellular carcinoma and might gap the bridge between zinc-finger like proteins and hepatocellular carcinoma.
Project description:Kindlin-2, an integrin-interacting FERM-domain-containing protein, has been known to play critical roles for tumor progression. However, the role of Kindlin-2 in renal cell carcinoma (RCC) progression has not been reported. We aim to investigate the role of Kindlin-2 in the progression of RCC and the underlying mechanisms. To uncover the related pathway in which Kindlin-2 is involved to promote clear cell renal cell carcinoma progression, ACHN control and Kindlin-2-depleting cells were analyzed by Affymetrix GeneChip human Gene 1.0 ST Arrays.