Project description:Eucalyptus camaldulensis and E. tereticornis are closely related species commonly cultivated for pulp wood in many tropical countries including India. Understanding the genetic structure and linkage disequilibrium (LD) existing in these species is essential for the improvement of industrially important traits. Our goal was to evaluate the use of simple sequence repeat (SSR) loci for species discrimination, population structure and LD analysis in these species. Investigations were carried out with the most common alleles in 93 accessions belonging to these two species using 62 SSR markers through cross amplification. The polymorphic information content (PIC) ranged from 0.44 to 0.93 and 0.36 to 0.93 in E. camaldulensis and E. tereticornis respectively. A clear delineation between the two species was evident based on the analysis of population structure and species-specific alleles. Significant genotypic LD was found in E. camaldulensis, wherein out of 135 significant pairs, 17 pairs showed r(2)?0.1. Similarly, in E. tereticornis, out of 136 significant pairs, 18 pairs showed r(2)?0.1. The extent of LD decayed rapidly showing the significance of association analyses in eucalypts with higher resolution markers. The availability of whole genome sequence for E. grandis and the synteny and co-linearity in the genome of eucalypts, will allow genome-wide genotyping using microsatellites or single nucleotide polymorphims.
Project description:Fast-growing Eucalyptus grandis trees are one of the most efficient producers of wood in South Africa. It is essential to maximize the effectiveness of these plantations by increasing their productivity, the quality and value of their products. We used microarray-based DNA-amplified fragment length polymorphism (AFLP) analysis in combination with expression profiling to develop fingerprints and profile gene expression of wood-forming tissue of seven individual E. grandis trees. A 1532-probe cDNA microarray was constructed by arraying 768 cDNA-AFLP fragments and 810 cDNA library clones from seven individual E. grandis trees onto silanised slides. The results revealed that 32% of the spotted fragments showed distinct expression patterns (with a fold change of at least 1.4 or -1.4 and a p value of 0.01) and could be grouped into clusters representing co-expressed genes. Evaluation of the binary distribution of cDNA-AFLP fragments on the array showed that the individual genotypes could be discriminated. A simple, yet general method was developed for genotyping and expression profiling of wood-forming tissue of E. grandis trees differing in their splitting characteristics and in their lignin contents. Evaluation of gene expression profiles and the binary distribution of cDNA-AFLP fragments on the chip suggest that the prototype chip developed could be useful for transcript profiling and for the identification of Eucalyptus trees with preferred wood quality traits in commercial breeding programmes.