Project description:Catharanthus roseus produces a variety of indole alkaloids with significant biological activities. The indole alkaloids including catharanthine, vindolinine, ajmalicine and the precursor strictosidine were dramatically induced in the leaves following binary stress. To profile the modification of indole alkaloids in C. roseus seedlings under the binary stress of ultraviolet-B irradiation and dark incubation, gel-free proteomic analysis was carried out to uncover the underlying molecular mechanism.
Project description:The goal of this study is to investigate differential transcription profiles of leaf material/cells accumulating different levels of alkaloids in the anticancer plant Catharanthus roseus.
Project description:In previous work, cephalotaxine, harringtonine, homoharringtonine were shown to be accumulated differentially after various stimuli. Especially, after MeJA treatment, the concentration of 3 cephalotaxus alkaloids all showed decreasing. We speculated that the genes expressed lower after MeJA treatment might encode some enzymes responsible for the biosynthesis of cephalotaxus alkaloids. Therefore, choosing the sample treated with MeJA and the control sample for comparative iTRAQ analysis will greatly facilitate dissection of the genes involved in the biosynthesis of cephalotaxus alkaloids and even the acyl portions of cephalotaxus ester alkaloids. This approach is widely used for mining and identifying novel genes in the biosynthesis of secondary metabolites without genome data in plants.
Project description:This dataset belongs to a set of three RNA-Seq experiments that were carried out to study the regulation of monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. For this dataset, C. roseus flower petals were infiltrated with Agrobacterium tumefaciens C58C1 or infiltration buffer as control. For each sample, flower petals from four to five flowers, each from a different individual plant were infiltrated.
Project description:This dataset belongs to a set of three RNA-Seq experiments that were carried out to study the regulation of monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. For this dataset, C. roseus stems were dissected to separate the epidermis from the lower tissues. Leaves were dissected to obtain veins and veinless leaves. As controls, undissected leaves and stems were used. Three biological replicates were analyzed per sample.
Project description:This dataset belongs to a set of three RNA-Seq experiments that were carried out to study the regulation of monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. For this dataset, C. roseus hairy roots overexpressing the well-known MIA biosynthesis regulator ORCA3 were analyzed by RNA-Seq. As control, C. roseus hairy roots expressing GUS were used. Each analyzed sample consisted of an independent hairy root line; three hairy root lines per construct were analyzed.
Project description:The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications.
Project description:Tanshinones and phenolic acids are crucial bioactive compounds biosynthesized in Salvia miltiorrhiza. Methyl jasmonate (MeJA) is an effective elicitor to enhance the production of phenolic acids and tanshinones simultaneously, while yeast extract (YE) is used as a biotic elicitor that only induce tanshinones accumulation. However, little was known about the different molecular mechanism. To identify the downstream and regulatory genes involved in tanshinone and phenolic acid biosynthesis, we conducted comparative transcriptome profiling of S. miltiorrhiza hairy roots treated with either MeJA or YE.Total 55588 unigenes were assembled from about 1.72 billion clean reads, of which 42458 unigenes (76.4%) were successfully annotated. The expression patterns of 19 selected genes in the significantly upregulated unigenes were verified by quantitative real-time PCR. The candidate downstream genes and other cytochrome P450s involved in the late steps of tanshinone and phenolic acid biosynthesis pathways were screened from the RNA-seq dataset based on co-expression pattern analysis with specific biosynthetic genes. Additionally, 375 transcription factors were identified to exhibit a significant up-regulated expression pattern in response to induction. This study can provide us a valuable gene resource for elucidating the molecular mechanism of tanshinones and phenolic acids biosynthesis in hairy roots of S.miltiorrhiza.
Project description:Monoterpenoid indole alkaloids (MIAs) are plant defense compounds and high-value pharmaceuticals. Biosynthesis of the universal MIA precursor, secologanin, is organized between internal phloem-associated parenchyma (IPAP) and epidermis cells. Transporters for intercellular transport of proposed mobile pathway intermediates have remained elusive. Screening of an Arabidopsis thaliana transporter library expressed in Xenopus oocytes identified AtNPF2.9 as a putative iridoid glucoside importer. Eight orthologs were identified in Catharanthus roseus, of which three, CrNPF2.4, CrNPF2.5 and CrNPF2.6, were capable of transporting the iridoid glucosides 7-deoxyloganic acid, loganic acid, loganin and secologanin into oocytes. Based on enzyme expression data and transporter specificity, we propose that several enzymes of the biosynthetic pathway are present in both IPAP and epidermis cells, and that the three transporters are responsible for transporting not only loganic acid, as previously proposed, but multiple intermediates. Identification of the iridoid glucoside-transporting CrNPFs is an important step toward understanding the complex orchestration of the seco-iridioid pathway.
Project description:Catharanthus roseus is a medicinal plant, which can produce monoterpene indole alkaloid (MIA) metabolites with biological activity and is rich in vinblastine and vincristine. With release of the scaffolded genome sequence of C. roseus, it is necessary to annotate gene functions on the whole-genome level. Recently, 53 RNA-seq datasets are available in public with different tissues (flower, root, leaf, seedling, and shoot) and different treatments (MeJA, PnWB infection and yeast elicitor). We used in-house data process pipeline with the combination of PCC and MR algorithms to construct a co-expression network exploring multi-dimensional gene expression (global, tissue preferential, and treat response) through multi-layered approaches. In the meanwhile, we added miRNA-target pairs, predicted PPI pairs into the network and provided several tools such as gene set enrichment analysis, functional module enrichment analysis, and motif analysis for functional prediction of the co-expression genes. Finally, we have constructed an online croFGD database (http://bioinformatics.cau.edu.cn/croFGD/). We hope croFGD can help the communities to study the C. roseus functional genomics and make novel discoveries about key genes involved in some important biological processes.