Project description:Elucidating the molecular mechanisms underlying snake venom variability provides important clues for understanding how the biological functions of this powerful toxic arsenal evolve. We analyzed in detail individual transcripts and venom protein isoforms produced by five specimens of a venomous snake (Bothrops atrox) from two nearby but genetically distinct populations from the Brazilian Amazon rainforest which show functional similarities in venom properties. Individual variation was observed among the venoms of these specimens, but the overall abundance of each general toxin family was conserved both in transcript and in venom protein levels. However, when expression of independent paralogues was analyzed, remarkable differences were observed within and among each toxin group, both between individuals and between populations. Transcripts for functionally essential venom proteins (“core function” proteins) were highly expressed in all specimens and showed similar transcription/translation rates. In contrast, other paralogues (“adaptive” proteins) showed lower expression levels and the toxins they coded for varied among different individuals. These results provide support for the inferences that (a) expression and translational differences play a greater role in defining adaptive variation in venom phenotypes than does sequence variation in protein coding genes and (b) convergent adaptive venom phenotypes can be generated through different molecular mechanisms. Significance: Analysis of individual transcripts and venom protein isoforms produced by specimens of a venomous snake (Bothrops atrox), from the Brazilian Amazon rainforest, revealed that transcriptional and translational mechanisms contribute to venom phenotypic variation. Our finding of evidence for high expression of toxin proteins with conserved function supports the hypothesis that the venom phenotype consists of two kinds of proteins: conserved “core function” proteins that provide essential functional activities with broader relevance and less conserved “adaptive” proteins that vary in expression and may permit customization of protein function. These observations allowed us to suggest that genetic mechanisms controlling venom variability are not restricted to selection of gene copies or mutations in structural genes but also to selection of the mechanisms controlling gene expression, contributing to the plasticity of this important phenotype for venomous snakes.
Project description:The leaf transcriptome of the nickel hyperaccumulator Geissois pruinosa (Rubiaceae) endemic from New Caledonia was compared to the closely related non-accumulator Geissois racemosa, living respectively in serpentine maquis or rainforest on limestone, to identity differentially expressed genes potentially involved in Ni hyperaccumulation.
Project description:In this study, genome-wide single-nucleotide polymorphism (SNP) data (Illumina Infinium® MEGA array) was gathered for 200 individuals distributed across Perú, and then analyzed to investigate signals of recent positive selection specific to populations living in the high-altitude environments of the Andes, the arid Pacific coast and the Amazon rainforest.
| EGAS00001005692 | EGA
Project description:Venom Composition of Neglected Bothropoid Snakes from the Amazon Rainforest: Ecological and Toxinological Implications
Project description:Arthropod-borne viruses (arboviruses) represent a threat to global public health, especially in the tropical and subtropical regions of the world. More than 150 arboviruses can infect humans; they cause mainly febrile illness, although hemorrhagic complications and diseases affecting the central nervous system (SNC) can also be observed. Arboviruses represent a threat to Brazil and, therefore, a permanent surveillance of these viruses is required to timely reduce the risk of epidemic outbreaks. The Brazilian Amazon region is where the highest number of arboviruses has been detected in the world. Besides, malaria is also endemic in the Amazon region, with a significant predominance of Plasmodium vivax. It is often difficult to differentiate between malaria and arboviral diseases, as they share similar clinical features and laboratory findings, mainly undifferentiated fever. This study aimed to estimate possible viral etiology in patients with febrile syndrome negative for Plasmodium infection, in the Brazilian Amazon. We initially analyzed serum samples of 124 participants with a DNA microarray platform designed for the detection of arboviruses and viruses transmitted by small mammals, but no virus was detected. Then, the serum samples of 76 participants were analyzed with a deep New Generation Sequencing, which showed evidence of the presence of only one arbovirus, the Zika virus in only one pool of 9 serum samples. This result is in contrast with our hypothesis, showing that arboviruses are not frequent in suspected malaria cases in Manaus, Brazil. Other viruses instead of arboviruses were found in this study. Primate erythrovirus 1 was the virus most frequently found virus in the suspected malaria patients, followed by Enterobacteria phage lambda. Besides, we detected, in a lower frequency, the Pegivirus C. In addition to the exogenous viruses, we also detected human endogenous retrovirus in all pools. Due to the high number of viruses that are important in the differential diagnosis of malaria, cost-effective and simple high throughput methods are required, helping molecular surveillance of misdiagnosed viral infections. Further studies with more robust sample sizes in other areas in the Amazon are needed.