ABSTRACT: Bifidobacterium isolates from the human vaginal microbiome including B. breve, B. longum, and unclassified Bifidobacterium spp. Genome sequencing and assembly
Project description:Members of the serpin (serine protease inhibitor) superfamily have been identified in higher, multicellular eukaryotes, as well as in bacteria, although surveillance of available genome sequences indicates that bacterial serpin-encoding (ser) homologs are not widely distributed. In members of the genus Bifidobacterium this gene appears to be present in at least five, and perhaps up to nine, out of 30 species tested. Moreover, phylogenetic analysis using available bacterial and eukaryotic serpin sequences revealed that bifidobacteria specify serpins that form a separate clade. We characterized the ser210B locus of Bifidobacterium breve 210B, which consists of a number of genes, whose deduced protein products display significant similarity to proteins encoded by corresponding loci found in several other bifidobacteria. Northern hybridization, primer extension, micro array analysis, RT-PCR and Quantitative Real Time (qRT) - PCR analysis revealed that a 3.5 kb polycistronic mRNA, encompassing the ser210B operon with a single transcriptional start site, is strongly induced following treatment of B. breve 210B cultures with particular proteases. In contrast, transcription of the ser homolog of other bifidobacteria, such as Bifidobacterium longum subsp. infantis, Bifidobacterium dentium and B. longum subsp. longum, appears to be triggered by a different set of proteases Transcriptional response to protease treatments (kallikrein, papain and chymotrypsin) of Bifidobacterium breve 210B
Project description:Members of the serpin (serine protease inhibitor) superfamily have been identified in higher, multicellular eukaryotes, as well as in bacteria, although surveillance of available genome sequences indicates that bacterial serpin-encoding (ser) homologs are not widely distributed. In members of the genus Bifidobacterium this gene appears to be present in at least five, and perhaps up to nine, out of 30 species tested. Moreover, phylogenetic analysis using available bacterial and eukaryotic serpin sequences revealed that bifidobacteria specify serpins that form a separate clade. We characterized the ser210B locus of Bifidobacterium breve 210B, which consists of a number of genes, whose deduced protein products display significant similarity to proteins encoded by corresponding loci found in several other bifidobacteria. Northern hybridization, primer extension, micro array analysis, RT-PCR and Quantitative Real Time (qRT) - PCR analysis revealed that a 3.5 kb polycistronic mRNA, encompassing the ser210B operon with a single transcriptional start site, is strongly induced following treatment of B. breve 210B cultures with particular proteases. In contrast, transcription of the ser homolog of other bifidobacteria, such as Bifidobacterium longum subsp. infantis, Bifidobacterium dentium and B. longum subsp. longum, appears to be triggered by a different set of proteases
Project description:Bifidobacterium longum subsp. infantis is a bacterial commensal that colonizes the breast-fed infant gut where it utilizes indigestible components delivered in human milk. Accordingly, human milk contains several non-protein nitrogenous molecules, including urea at high abundance. This project investigates the degree to which urea is utilized as a primary nitrogen source by Bifidobacterium longum subsp. infantis and incorporation of hydrolysis products into the expressed proteome.
Project description:This work aimed to investigate the ability of two human-derived bifidobacterial strains, i.e. Bifidobacterium breve UCC2003 and Bifidobacterium longum NCIMB 8809, to utilize various oligosaccharides (i.e., 4-galactosyl-kojibiose, lactulosucrose, lactosyl-oligofructosides, raffinosyl-oligofructosides and lactulose-derived galacto-oligosaccharides) synthesized by means of microbial glycoside hydrolases. With the exception of raffinosyl-oligofructosides, these biosynthetic oligosaccharides were shown to support growth of at least one of the two studied strains. Short-chain fatty acid (SCFA) analysis by HPLC corroborated the suitability of most of the studied novel oligosaccharides as growth substrates for the two bifidobacterial strains, showing that acetate is the main metabolic end product followed by lactic and formic acids. Transcriptomic and functional genomic approaches carried out for B. breve UCC2003 allowed the identification of key genes encoding glycoside hydrolases and protein transport systems involved in the metabolism of 4-galactosyl-kojibiose and lactulosucrose. In particular, the role of β-galactosidases in the hydrolysis of these particular trisaccharides was demonstrated, highlighting their importance in oligosaccharide metabolism by human bifidobacterial strains.
Project description:Transcriptional profiling of Bifidobacterium longum mutant versus wt strain in exponentional phase Keywords: Characterization of natural mutant
Project description:Bifidobacteria constitute commensal bacteria that commonly inhabit the mammalian gastro intestinal tract. The gut commensal Bifidobacterium breve UCC2003 was previously shown to utilise a variety of plant/diet-derived carbohydrates, including cellodextrin, starch and galactan. In the current study, we investigated the ability of this strain to utilize (parts of) a host-derived source of carbohydrate, namely the mucin glycoprotein. Here, we demonstrate that B. breve UCC2003 exhibits growth properties in a mucin-based medium, but only when in the presence of Bifidobacterium bifidum PRL2010, which is known to metabolize mucin. Based on HPAEC analysis, transcriptome data and insertion mutagenesis, it appears that B. breve UCC2003 sustains this improved survival in co-culture by cross-feeding on a combination of fucose, sialic acid and galactose-containing oligosaccharides.
Project description:Human milk oligosaccharides (HMOs) function as prebiotics for beneficial bacteria in the developing gut, often dominated by Bifidobacterium spp. To understand the relationship between Bifidobacterium utilizing HMOs and how the metabolites that are produced could affect the host, we analyzed the metabolism of HMO 2’-fucosyllactose (2’-FL), 3-fucosyllactose (3FL and difucosyllactose (DFL) in Bifidobacterium longum ssp. infantis Bi-26 and ATCC15697. RNA-seq and metabolite analysis was performed on samples at early (A600=0.25), mid-log (0.5-0.7) and late-log phases (1.0-2.0) of growth.
Project description:Transcriptional profiling of Bifidobacterium longum mutant versus wt strain in exponentional phase Keywords: Characterization of natural mutant One B. longum mutant (HPR2) was analysed versus the wt strain NCC2705 in: exponential phase 37°,pH 6.0, MRS, headspace flushing with CO2. Three biological replicates.
Project description:Recent studies have begun to elucidate the mechanisms of utilisation of some human milk oligosaccharides (HMO) components by Bifidobacterium breve. However, this phenomenon is still relatively poorly understood, with little to no work to date in understanding a number of specific structures common to HMO. In this study, we demonstrate that the prototype B. breve strain UCC2003 possesses specific metabolic pathways for the utilisation of Lacto-N-Tetraose and Lacto-N-neoTetraose, which represent the central moieties of Type I and Type II HMOs, respectively. Using a combination of experimental approaches, the enzymatic machinery involved in the metabolism of these two HMO structures was identified and characterised. Homologs of tWe also identified the key genetic loci involved in the utilisation of these HMO substrates in B. breve, B. bifidum and B. longum subsp. infantis using bioinformatic analyses were shown to be, and noted the relatively variably present among other members ofscant distribution of their homologs across the Bifidobacterium genus as a whole, withwhile noting a distinct pattern of conservation of LNB utilisation genes inamong human-associated bifidobacterial species.
Project description:Human milk oligosaccharides (HMOs) function as prebiotics for beneficial bacteria in the developing gut, often dominated by Bifidobacterium spp. To understand the relationship between Bifidobacterium utilizing HMOs and how the metabolites that are produced could affect the host, we analyzed the metabolism of HMO 2’-fucosyllactose (2’-FL) in Bifidobacterium longum ssp. infantis Bi-26. RNA-seq and metabolite analysis (NMR/GCMS) was performed on samples at early (A600=0.25), mid-log (0.5-0.7) and late-log phases (1.0-2.0) of growth. Transcriptomic analysis revealed many gene clusters including three novel ABC-type sugar transport clusters to be upregulated in Bi-26 involved in processing of 2’-FL along with metabolism of its monomers glucose, fucose and galactose. Metabolite data confirmed the production of formate, acetate, 1,2-propanediol, lactate and cleaving of fucose from 2’-FL. The formation of acetate, formate, and lactate showed how the cell uses metabolites during fermentation to produce higher levels of ATP (mid-log compared to other stages) or generate cofactors to balance redox. We concluded 2’-FL metabolism is a complex process involving gene clusters throughout the genome producing more metabolites compared to lactose. These results provide valuable insight on the mode-of-action of 2’-FL utilization by Bifidobacterium longum ssp. infantis Bi-26.