Project description:We combined Self-Transcribing Active Regulatory Region Sequencing (STARR-seq) with an enrichment step using chromatin immunoprecipitation in a massively parallel reporter assay. We applied this assay, termed ChIP-STARR-seq, to normal (primed) and naive human embryonic stem cells, building up a comprehensive catalogue of functional enhancers. For further details, please refer to the sub-series. This SuperSeries is composed of the SubSeries listed below.
Project description:We combined Self-Transcribing Active Regulatory Region Sequencing (STARR-seq) with an enrichment step using chromatin immunoprecipitation in a massively parallel reporter assay. We applied this assay, termed ChIP-STARR-seq, to normal (primed) and naive human embryonic stem cells, building up a comprehensive catalogue of functional enhancers. This database record describes the ChIP-seq and BAC component.
Project description:We combined Self-Transcribing Active Regulatory Region Sequencing (STARR-seq) with an enrichment step using chromatin immunoprecipitation in a massively parallel reporter assay. We applied this assay, termed ChIP-STARR-seq, to normal (primed) and naive human embryonic stem cells, building up a comprehensive catalogue of functional enhancers. This database record describes the STARR-RNA-seq component.
Project description:We combined Self-Transcribing Active Regulatory Region Sequencing (STARR-seq) with an enrichment step using chromatin immunoprecipitation in a massively parallel reporter assay. We applied this assay, termed ChIP-STARR-seq, to normal (primed) and naive human embryonic stem cells, building up a comprehensive catalogue of functional enhancers. This database record describes the DNA-seq component from plasmid libraries prior to transfection.
Project description:We combined Self-Transcribing Active Regulatory Region Sequencing (STARR-seq) with an enrichment step using chromatin immunoprecipitation in a massively parallel reporter assay. We applied this assay, termed ChIP-STARR-seq, to normal (primed) and naive human embryonic stem cells, building up a comprehensive catalogue of functional enhancers. This database record describes the DNA-seq component from isolated plasmids.
Project description:Enhancers are genetic elements that regulate spatiotemporal gene expression. Enhancer function requires transcription factor (TF) binding and correlates with histone modifications. However, the extent to which TF binding and histone modifications functionally define active enhancers remains unclear. Here, we combine chromatin immunoprecipitation with a massively parallel reporter assay (ChIP-STARR-seq) to identify functional enhancers in human embryonic stem cells (ESCs) genome-wide in a quantitative unbiased manner. Although active enhancers associate with TFs, only a minority of regions marked by NANOG, OCT4, H3K27ac, and H3K4me1 function as enhancers, with activity markedly changing under naive versus primed culture conditions. We identify an enhancer set associated with functions extending to non-ESC-specific processes. Moreover, although transposable elements associate with putative enhancers, only some exhibit activity. Similarly, within super-enhancers, large tracts are non-functional, with activity restricted to small sub-domains. This catalog of validated enhancers provides a valuable resource for further functional dissection of the regulatory genome.
Project description:This SuperSeries is composed of the following subset Series: GSE27714: Enhancer Decommissioning by LSD1 During Embryonic Stem Cell Differentiation (expression) GSE27841: Enhancer Decommissioning by LSD1 During Embryonic Stem Cell Differentiation (ChIP-seq) Refer to individual Series
Project description:RNA-binding proteins (RBPs) have essential roles in RNA-mediated gene regulation, and yet annotation of RBPs is limited mainly to those with known RNA-binding domains. To systematically identify the RBPs of embryonic stem cells (ESCs), we here employ interactome capture, which combines UV cross-linking of RBP to RNA in living cells, oligo(dT) capture and MS. From mouse ESCs (mESCs), we have defined 555 proteins constituting the mESC mRNA interactome, including 283 proteins not previously annotated as RBPs. Of these, 68 new RBP candidates are highly expressed in ESCs compared to differentiated cells, implicating a role in stem-cell physiology. Two well-known E3 ubiquitin ligases, Trim25 (also called Efp) and Trim71 (also called Lin41), are validated as RBPs, revealing a potential link between RNA biology and protein-modification pathways. Our study confirms and expands the atlas of RBPs, providing a useful resource for the study of the RNA-RBP network in stem cells.