Project description:Recent pandemic outbreaks confirmed the crucial role of early detection and more comprehensive knowledge of invasive species and infectious diseases. The freshwater snail Pomacea canaliculata is indexed among the most invasive pests in the world and it can be the intermediate host of the human parasitic nematode Angiostrongylus cantonensis. Here, we investigated the changes in the proteome of the snail ampulla after the exposure to a nematode-based molluscicide.
Project description:During its life cycle, the helminth parasite Schistosoma mansoni uses the freshwater snail Biomphalaria glabrata as an intermediate host to reproduce asexually generating cercariae for infection of the human definitive host. Following invasion of the snail, the parasite develops from a miracidium to a mother sporocyst and releases excretory secretory products (ESPs) that likely influence the outcome of host infection. To better understand molecular interactions between these ESPs and the host snail defence system, we determined gene expression profiles of haemocytes from S. mansoni resistant or -susceptible strains of B. glabrata exposed in vitro to S. mansoni ESPs (20ug/ml) for 1 h, using a 5K B. glabrata cDNA microarray.
Project description:We examined adaptive morphological divergence and epigenetic variation in genetically impoverished asexual populations of a freshwater snail, Potamopyrgus antipodarum from distinct environments. These populations exhibit environment-specific adaptive divergence in shell shape and significant genome wide DNA methylation differences among differentially adapted lake and fast water flow river populations. The epigenetic variation correlated with adaptive phenotypic variation in rapidly adapting asexual animal populations. This provides one of the first examples of environmentally-driven differences in epigenetics that associates with adaptive phenotypic divergence.