Project description:LEAFY COTYLEDON1 (LEC1), an atypical subunit of the NF-Y CCAAT binding transcription factor, is a central regulator that controls many aspects of seed development including the maturation phase during which seeds accumulate storage macromolecules and embryos acquire the ability to withstand desiccation. To define the gene network and developmental processes controlled by LEC1, genes regulated directly by and downstream of LEC1 were identified. In order to identify the genes bound by LEC1 in soybean embryos, we used two antibodies specific for soybean LEC1 (GmLEC1) and performed chromatin immunoprecipitation followed by sequencing (ChIP-Seq) using chromatin isolated from soybean embryos at the cotyledon, early maturation and mid-maturation stages.
Project description:Soybean (Glycine max) seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on guilt-by-association relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants.
Project description:Soybean (Glycine max) seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants. SUBMITTER_CITATION: Biology 2013, 2(4), 1311-1337; doi:10.3390/biology2041311 Changes in RNA Splicing in Developing Soybean (Glycine max) Embryos Delasa Aghamirzaie, Mahdi Nabiyouni, Yihui Fang, Curtis Klumas, Lenwood S. Heath, Ruth Grene and Eva Collakova SUBMITTER_CITATION: Metabolites 2013, 3(2), 347-372; doi:10.3390/metabo3020347 Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max) Embryos Eva Collakova, Delasa Aghamirzaie, Yihui Fang, Curtis Klumas, Farzaneh Tabataba, Akshay Kakumanu, Elijah Myers, Lenwood S. Heath and Ruth Grene Total mRNA profiles of 10 time course samples of Soybean developing embryos with three replicates per sample were generated by deep sequencing, using Illumina HiSeq 2000
Project description:RNA-seq was used to characterize gene expression in soybean from a wide range of tissues. The primary focus of the project was small RNAs, and the identification of microRNAs and phased siRNA-generating loci, but RNA-seq data were generated from the same samples. This project was supported by the United Soybean Board.
Project description:A transcriptome analysis of soybean seeds harvested at different developing stages (between stage 7.1 and stage 9) was carried out to understand the molecular events occuring during the acquisition of seed longevity during maturation.
Project description:Genome-wide identification of binding sites for NAC and YABBY transcription factors and co-regulated genes during soybean seedling development by ChIP-Seq and RNA-Seq.