Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
Project description:Differential transcriptomic responses of Biomphalaria glabrata (Gastropoda, Mollusca) to bacteria and metazoan parasites Schistosoma mansoni and Echinostoma paraensei (Digenea, Platyhelminthes). Transcriptional profiling of Biomphalaria glabrata comparing control uninfected M-line B. glabrata with five experimental groups. The experimental groups are: wounded but not infected M-line, Escherichia coli infected, Micrococcus luteus infected, Echinostoma paraensei infected and Schistosoma mansoni infected at 12 hours time point post infection.
Project description:Differential transcriptomic responses of Biomphalaria glabrata (Gastropoda, Mollusca) to bacteria and metazoan parasites Schistosoma mansoni and Echinostoma paraensei (Digenea, Platyhelminthes). Transcriptional profiling of Biomphalaria glabrata comparing control uninfected M-line B. glabrata with five experimental groups. The experimental groups are: wounded but not infected M-line, Escherichia coli infected, Micrococcus luteus infected, Echinostoma paraensei infected and Schistosoma mansoni infected at 12 hours time point post infection. Seven groups of samples: two controls, wounded, two bacterial- and two trematode-infected B. glabrata were analyzed in triplicate, using universal RNA reference.
Project description:Molecular phylogenomics investigates evolutionary relationships based on genomic data. However, despite genomic sequence conservation, changes in protein interactions can occur relatively rapidly and may cause strong functional diversification. To investigate such functional evolution, we here combine phylogenomics with interaction proteomics. We develop this concept by investigating the molecular evolution of the shelterin complex, which protects telomeres, across 16 vertebrate species from zebrafish to humans covering 450 million years of evolution. Our phylointeractomics screen discovers previously unknown telomere-associated proteins and reveals how homologous proteins undergo functional evolution. For instance, we show that TERF1 evolved as a telomere-binding protein in the common stem lineage of marsupial and placental mammals. Phylointeractomics is a versatile and scalable approach to investigate evolutionary changes in protein function and thus can provide experimental evidence for phylogenomic relationships.