Project description:The rice gene SUB1A-1 confers flooding tolerance restricting shoot growth during submergence. Rice with SUB1A also show more rapid recovery after submergence ends, but mechanisms by which SUB1A improves recovery from submergence had not been examined. In this study, the transcriptome was sequenced at five time points over a 24 hour submergence recovery period in near-isogenic rice genotypes with and without SUB1A.
Project description:The profiling was conducted with the Rice 3'-Tiling 135k Microarray designed from 31,439 genes deposited at IRGSP, RAP2 database (http://rapdb.lab.nig.ac.jp). In this research, we have searched for genes responsible for submergence escape from a deepwater rice cultivar Pin Gaew 56 (PG56).
Project description:To avoid low oxygen, oxygen deficiency or oxygen deprivation, deepwater rice cultivated in flood planes can develop elongated internodes in response to submergence. Knowledge of the gene regulatory networks underlying rapid internode elongation is important for an understanding of the evolution and adaptation of major crops in response to flooding. To elucidate the genetic and molecular basis controlling their deepwater response we used microarrays and performed expression quantitative trait loci (eQTL) and phenotypic QTL (phQTL) analyses of internode samples of 85 recombinant inbred line (RIL) populations of non-deepwater (Taichung 65)- and deepwater rice (Bhadua). After evaluating the phenotypic response of the RILs exposed to submergence, confirming the genotypes of the populations, and generating 188 genetic markers, we identified 10,047 significant eQTLs comprised of 2,902 cis-eQTLs and 7,145 trans-eQTLs and 3 significant eQTL hotspots on chromosomes 1, 4, and 12 that affect the expression of many genes. The hotspots on chromosomes 1 and 4 located at different position from phQTLs detected in this study and other previous studies. We then regarded the eQTL hotspots as key regulatory points to infer causal regulatory networks of deepwater response including rapid internode elongation. Our results suggest that the downstream regulation of the eQTL hotspots on chromosomes 1 and 4 is independent, and that the target genes are partially regulated by SNORKEL1 and SNORKEL2 genes (SK1/2), key ethylene response factors. Subsequent bioinformatic analyses, including gene ontology-based annotation and functional enrichment analysis and promoter enrichment analysis, contribute to enhance our understanding of SK1/2-dependent and independent pathways. One remarkable observation is that the functional categories related to photosynthesis and light signaling are significantly over-represented in the candidate target genes of SK1/2. The combined results of these investigations together with genetical genomics approaches using structured populations with a deepwater response are also discussed in the context of current molecular models concerning the rapid internode elongation in deepwater rice. This study provides new insights into the underlying genetic architecture of gene expression regulating the response to flooding in deepwater rice and will be an important community resource for analyses on the genetic basis of deepwater responses.
Project description:In this study, we analyzed the early response of two rice cultivars to infection by RSV (Rice stripe virus) and its carrier at the transcriptome level using next-generation deep-sequencing techniques. We investigated the alteration in gene expression between a disease-resistant cultivar and a susceptible cultivar before and after inoculation with RSV by co-culturing with Laodelphax striatellus for 48 h. Our study provides insight at the molecular level into the mechanism of development of rice stripe disease, which contributes to our understanding of the rice-RSV interaction.
Project description:To understand the dynamics and global gene reprogramming in the early response to mechanical wounding in rice, the transcriptional response to mechanical injury was analyzed. A time-course experiment revealed the highly dynamic nature of the wound response in rice. Mechanical wounding triggered extensive gene expression reprogramming in the locally wounded leaf, affecting various physiological processes, including defense mechanisms and potentially tissue repair and regeneration. The rice response to mechanical wounding displayed both differences and similarities compared to the response to jasmonate treatment. These results highlight the importance of early JA signaling in response to mechanical stress in rice. This analysis provides an overview of the global transcriptional response to mechanical stress in rice, offering valuable insights for future studies on rice's response to injury, insect attack, and abiotic stresses.
Project description:Rice NSF45K microarray experiment to dissect submergence tolerance response in submergence tolerant rice plant, M202(Sub1): We previously characterized the rice (Oryza sativa L.) Sub1 locus encoding three Ethylene Responsive Factor (ERF) transcriptional regulators. Genotypes carrying the Sub1A-1 allele are tolerant of prolonged submergence. To elucidate the mechanism of Sub1A-1 mediated tolerance, we performed transcriptome analyses comparing the temporal submergence response of Sub1A-1 containing tolerant M202(Sub1) with the intolerant isoline M202 lacking this gene at three duration of submergence (0d, 1d, and 6d) with two biological replicates and one or two dye-swaps. We identified 898 genes displaying Sub1A-1-dependent regulation. Keywords: Abiotic stress tolerance response