Project description:The transcriptome of Escherichia coli K-12 has been widely studied over a variety of conditions for the past decade while such studies involving E. coli O157:H7, its pathogenic cousin, are just now being conducted. To better understand the impact of an anaerobic environment on E. coli O157:H7, global transcript levels of strain EDL933 cells grown aerobically were compared to cells grown anaerobically using microarrays.
Project description:The transcriptome of Escherichia coli K-12 has been widely studied over a variety of conditions for the past decade while such studies involving E. coli O157:H7, its pathogenic cousin, are just now being conducted. To better understand the impact of intracellular life within a ruminant and environmental protozoan on E. coli O157:H7, global transcript levels of strain EDL933 cells inside Acanthamoeba were compared to cell grown in the protozoan media (ATCC PYG712) by microarray.
Project description:The transcriptome of Escherichia coli K-12 has been widely studied over a variety of conditions for the past decade while such studies involving E. coli O157:H7, its pathogenic cousin, are just now being conducted. To better understand the impact of heat shock on E. coli O157:H7, global transcript levels of strain EDL933 cells shifted from 37°C to 50°C for 15 min were compared to cells left at 37°C using microarrays. Keywords: Stress Response
Project description:The transcriptome of Escherichia coli K-12 has been widely studied over a variety of conditions for the past decade while such studies involving E. coli O157:H7, its pathogenic cousin, are just now being conducted. To better understand the impact of rumen fluid on E. coli O157:H7, global transcript levels of strain EDL933 cells resuspended in heat clarified rumen fluid for 15 min were compared to cells resuspended in fresh LB using microarrays.
Project description:Deletion of yedL was found to signifcantly decrease type three secretion in EHEC O157:H7. Transcriptional profiles of Escherichia coli O157: H7 and the isogenic yedL mutant were generated and compared.
Project description:Deletion of yhaO was found to signifcantly decrease type three secretion in EHEC O157:H7. Transcriptional profiles of Escherichia coli O157: H7 and the isogenic yhaO mutant were generated and compared.
Project description:Cinnamaldehyde is a natural antimicrobial and has been found to be effective against many foodborne pathogens including Escherichia coli O157:H7. Although its antimicrobial effects have been well investigated, limited information is available on its effects at the molecular level. Sublethal treatment at 200 mg/l cinnamaldehyde inhibited growth of E. coli O157:H7 at 37oC and for ≤ 2 h caused cell elongation, but from 2 to 4 h growth resumed and cells reverted to normal length. To understand this transient behaviour, genome-wide transcriptional analysis of E. coli O157:H7 was performed at 2 and 4 h exposure to cinnamaldehyde. Drastically different gene expression profiles were obtained at 2 and 4 h. At 2 h exposure, cinnamaldehyde induced overexpression of many oxidative stress-related genes, reduced DNA replication, and synthesis of protein, O-antigen and fimbriae. At 4 h, many cinnamaldehyde-induced repressive effects on E. coli O157:H7 gene expressions were reversed and oxidatve stress genes were nolonger differentially expressed.
Project description:Pathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents. To identify non-toxic biofilm inhibitors for enterohemorrhagic Escherichia coli O157:H7, indole-3-acetaldehyde was used and reduced E. coli O157:H7 biofilm formation. Global transcriptome analyses revealed that indole-3-acetaldehyde most repressed two curli operons, csgBAC and csgDEFG, and induced tryptophanase (tnaAB) in E. coli O157:H7 biofilm cells. Electron microscopy showed that indole-3-acetaldehyde reduced curli production in E. coli O157:H7. Together, this study shows that Actinomycetales are an important resource of biofilm inhibitors as well as antibiotics.
Project description:Transcript abundance in Escherichia coli O157:H7 was determined in the presence or absence of pulsed expression of the small RNA, AsxR.