Project description:The hair follicle misorientation phenotype in Fzd6-/- mice appears to act through the PCP signaling system, but the downstream effectors of Fzd6 remain mysterious. We used microarrays to search for potential downstream effectors of the Fzd6 signaling pathway in regulating hair follicle orientation.
Project description:Dermal lymphatics form a network that connects all the hair follicles in skin and localize in proximity to the Hair Follicle Stem Cell. RNA sequencing analyses of isolated dermal lymphatics at two different time points of the hair follicle cycle (P55 and P70) indicate the existence of dynamic signaling networks associated with lymphatic remodeling, immune trafficking, and HF signaling.
Project description:Mouse hair follicles undergo synchronized cycles. Cyclical regeneration and hair growth is fueled by hair follicle stem cells (HFSCs). We used ChIP-seq to unfold genome-wide chromatin landscapes of Nfatc1 and dissect the biological relevence of its upstream BMP signaling in HFSC aging. Telogen quiescent hair follicle stem cells (HFSCs) were FACS-purified for ChIP-sequcencing.
Project description:Tissue regeneration relies on resident stem cells (SCs), whose activity and lineage choices are influenced by microenvironment. Exploiting the synchronized, cyclical bouts of tissue regeneration in hair follicles (HFs), we investigate how microenvironment dynamics shape the emergence of SC lineages. Employing epigenetic and ChIP-seq profiling, we uncover how signal-dependent transcription factors couple spatio-temporal cues to chromatin dynamics, thereby choreographing SC lineages. Using enhancer-driven reporters, mutagenesis and genetics, we show that simultaneous BMP-inhibitory and WNT signals set the stage for lineage choices by establishing chromatin platforms permissive for diversification. Mechanistically, when binding of BMP-effector pSMAD1 is relieved, super-enhancers driving HF-SC master regulators become silenced. Concomitantly, multipotent, lineage-fated super-enhancers silent in HF-SCs become activated by exchanging WNT-effectors TCF3/4 for LEF1. Throughout regeneration, lineage super-enhancers continue reliance upon LEF1, but then achieve specificity by accommodating additional incoming signaling effectors. Barriers to progenitor plasticity mount as diverse, signal-sensitive transcription factors shape LEF1-regulated super-enhancer dynamics.
Project description:Tissue regeneration relies on resident stem cells (SCs), whose activity and lineage choices are influenced by microenvironment. Exploiting the synchronized, cyclical bouts of tissue regeneration in hair follicles (HFs), we investigate how microenvironment dynamics shape the emergence of SC lineages. Employing epigenetic and ChIP-seq profiling, we uncover how signal-dependent transcription factors couple spatio-temporal cues to chromatin dynamics, thereby choreographing SC lineages. Using enhancer-driven reporters, mutagenesis and genetics, we show that simultaneous BMP-inhibitory and WNT signals set the stage for lineage choices by establishing chromatin platforms permissive for diversification. Mechanistically, when binding of BMP-effector pSMAD1 is relieved, super-enhancers driving HF-SC master regulators become silenced. Concomitantly, multipotent, lineage-fated super-enhancers silent in HF-SCs become activated by exchanging WNT-effectors TCF3/4 for LEF1. Throughout regeneration, lineage super-enhancers continue reliance upon LEF1, but then achieve specificity by accommodating additional incoming signaling effectors. Barriers to progenitor plasticity mount as diverse, signal-sensitive transcription factors shape LEF1-regulated super-enhancer dynamics.
Project description:Tissue regeneration relies on resident stem cells (SCs), whose activity and lineage choices are influenced by microenvironment. Exploiting the synchronized, cyclical bouts of tissue regeneration in hair follicles (HFs), we investigate how microenvironment dynamics shape the emergence of SC lineages. Employing epigenetic and ChIP-seq profiling, we uncover how signal-dependent transcription factors couple spatio-temporal cues to chromatin dynamics, thereby choreographing SC lineages. Using enhancer-driven reporters, mutagenesis and genetics, we show that simultaneous BMP-inhibitory and WNT signals set the stage for lineage choices by establishing chromatin platforms permissive for diversification. Mechanistically, when binding of BMP-effector pSMAD1 is relieved, super-enhancers driving HF-SC master regulators become silenced. Concomitantly, multipotent, lineage-fated super-enhancers silent in HF-SCs become activated by exchanging WNT-effectors TCF3/4 for LEF1. Throughout regeneration, lineage super-enhancers continue reliance upon LEF1, but then achieve specificity by accommodating additional incoming signaling effectors. Barriers to progenitor plasticity mount as diverse, signal-sensitive transcription factors shape LEF1-regulated super-enhancer dynamics.
Project description:Through recurrent bouts synchronous with the hair cycle, quiescent melanocyte stem cells (McSCs) become activated to generate proliferative progeny that differentiate into pigment-producing melanocytes. The signaling factors orchestrating these events remain incompletely understood. Here, we use single cell RNA-sequencing with comparative gene expression analysis to elucidate the transcriptional dynamics of McSCs through quiescence, activation, and melanocyte maturation. Unearthing signs of increased WNT and BMP signaling along this progression, we endeavored to understand how these pathways are integrated during differentiation. Employing conditional lineage-specific genetic ablation studies in mice, we find that loss of BMP signaling in the lineage leads to hair graying due to a block in melanocyte maturation. We show that interestingly, BMP signaling functions downstream of activated McSCs and maintains WNT effector, transcription factor LEF1. Employing pseudotime analysis, genetics, and promoter analyses, and chromatin landscaping, we show that following WNT-mediated activation of McSCs, BMP and WNT pathways collaborate to trigger the commitment of proliferative progeny by fueling LEF1 and MITF-dependent differentiation. Our findings shed light upon the signaling interplay and timing of cues that orchestrate melanocyte lineage progression in the hair follicle and underscore a key role for BMP signaling in driving complete differentiation.