Project description:We recruited 24 Mongolian volunteers,6 of which were T2D cases(sample T1-T6), 6 were prediabetes cases(sample P1-P6), and 12 were health cases(sample C1-C12). The metagenomic analysis of gut microbiota from the volunteers’ fecal samples was performed. We compared the microbial differences in the three groups, and analyzed the differences of the stool microbial function.
Project description:Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes) that the host otherwise does not produce. We report here the design of a high density custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals.
Project description:Interventions: Group 1: Surgical patients undergoing surgery for colorectal cancer: immunophenotyping by PBMCs and metagenomic analyses from stool, mucosa, and saliva samples perioperatively and during oncologic follow-up.
Group 2: oncologic patients with chemo- / immune therapy without recent surgery:
Immunophenotyping by PBMCs and metagenomic analyses from stool, mucosa and saliva samples during therapy and oncological follow-up.
Group 3: healthy controls:
Immunophenotyping by PBMCs and metagenomic analyses from stool, mucosa, and saliva samples at the time of screening colonoscopy.
Primary outcome(s): Difference in the differential abundance of the colonic mucosa of patients with CRC vs. healthy controls for evaluation as diagnostic biomarkers based on metagenomic analyzes (microbial pattern)
Study Design: Allocation: ; Masking: ; Control: ; Assignment: ; Study design purpose: diagnostic
Project description:The thermophilic Aquificales inhabit and play important biogeochemical roles in the geothermal environments globally. Although intensive studies on physiology, microbial ecology, biochemistry, metagenomics and metatranscriptomics of the Aquificales¬ species and Aquificales-containing environmental samples have been conducted, comprehensive understandings about their ecophysiology, especially in the natural niches have been limited. In the present study, an integrated suite of metagenomic, metatranscriptomic and metaproteomic analyses, for the first time, were conducted on a filamentous microbial community from the Apron and Channel Facies (ACF) of CaCO3 (travertine) deposition at Narrow Gauge, Mammoth Hot Springs, Yellowstone National Park.
Project description:The thermophilic Aquificales inhabit and play important biogeochemical roles in the geothermal environments globally. Although intensive studies on physiology, microbial ecology, biochemistry, metagenomics and metatranscriptomics of the Aquificales¬ species and Aquificales-containing environmental samples have been conducted, comprehensive understandings about their ecophysiology, especially in the natural niches have been limited. In the present study, an integrated suite of metagenomic, metatranscriptomic and metaproteomic analyses, for the first time, were conducted on a filamentous microbial community from the Apron and Channel Facies (ACF) of CaCO3 (travertine) deposition at Narrow Gauge, Mammoth Hot Springs, Yellowstone National Park.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
Project description:Despite the uniform mortality in pancreatic adenocarcinoma (PDAC), clinical disease heterogeneity exists with limited genomic differences. A highly aggressive tumor subtype termed basal-like was identified to show worse outcomes and higher inflammatory responses. Here, we focus on the microbial effect in PDAC progression and present a comprehensive analysis of the tumor microbiome in different PDAC subtypes. Tumors from 62 resectable PDAC patients were subjected to metagenomic sequencing and RNA-seq.
Project description:To understand the ecophysiology of Sulfurihydrogenibium spp. in situ, integrated metagenomic, metatranscriptomic and metaproteomic analyses were conducted on a microbial community from Narrow Gauge at Mammoth Hot Springs, Yellowstone National Park.