Project description:The clinical course of Crohn's disease (CD) is highly heterogeneous, confounding effective personalized therapy. There is a critical need to better understand the cellular mechanisms responsible for the variability in disease presentation and response to therapeutic modalities. We carried out whole transcriptome profiling in colon tissue from adult CD patients and controls and found that CD patients segregate into the same two molecular subtypes based on mRNA, long non-coding RNA, or microRNA profiles. MicroRNA-31 (miR-31) in colonic epithelium was identified as a primary contributor to this molecular stratification. We further performed small RNA-seq on formalin-fixed paraffin embedded colon and ileum biopsies obtained at the time of diagnosis from 130 treatment-naïve pediatric CD patients and controls. Colonic expression of miR-31 in pediatric patients was identified as predictive of either medically refractory rectal CD or fibrostenotic ileal CD. Our study reveals miRNAs as important molecular stratifiers and prognostic determinants of CD subtypes.
Project description:To further understand different gene expression of miR-31 knockout mouse colon and normal colon, we have employed colonic epithelium microarray expression profiling as a discovery platform to identify different genes with miR-31 knockout mouse colon and normal colon.comparision with normal colonic epithelium,upgene is 285 and downgene is 178 in knockout group.
Project description:Next to genetic alterations, it is being recognized that the cellular environment also acts as a major determinant in onset and progression of disease. In cases where different cell types contribute to the final disease outcome, this imposes environmental challenges as different cell types likely differ in their extracellular dependencies. A number of skin diseases, including psoriasis is characterized by a combination of keratinocyte hyperproliferation and immune cell activation. Activation of immune cells involves increased glucose consumption thereby intrinsicly limiting glucose availability for other cell types. Thus, these type of skin diseases require metabolic adaptations that enable coexistence between hyperproliferative keratinocytes and activated immune cells in a nutrient-limited environment. Hsa-microRNA-31-5p (miR-31) is highly expressed in keratinocytes within the psoriatic skin. Here we show that miR-31 expression in keratinocytes is induced by limited glucose availability and enables increased survival of keratinocytes under limiting glucose conditions, by increasing glutamine metabolism. In addition, miR-31 induced glutamine metabolism results in secretion of specific metabolites (aspartate and glutamate) but also secretion of immuno-modulatory factors. We show that this miR-31-induced secretory phenotype is sufficient to induce Th17 cell differentiation, a hallmark of psoriasis. Inhibition of glutaminase (GLS) using CB-839 impedes miR31-induced metabolic rewiring and secretion of immuno-modulatory factors. Concordantly, pharmacological targeting of GLS alleviated psoriasis pathology in a mouse model of psoriasis. Together our data illustrate an emerging concept of metabolic interaction across cell compartments that characterizes disease development, which can be employed to design effective treatment options for disease, as shown here for psoriasis.
Project description:There is a need for reliable prognostic markers that can guide therapeutic intervention in Crohn’s disease (CD). We examined whether different behavioral phenotypes in CD can be classified based on colonic miRNA or mRNA expression and if miRNAs have prognostic utility for CD. We perform high-throughput sequencing of small RNA and mRNA isolated from colon tissue from CD patients and non-IBD (NIBD) controls. To identify miRNA and genes associated with specific behavioral phenotypes of CD, patients were stratified according to disease behavior (non-stricturing, non-penetrating; stricturing; penetrating) and compared miRNA profiles in each class with those of the NIBD group. Using a novel statistical simulation approach applied to colonic RNA-seq data for CD patients and NIBD controls, we identify at drivers of gene expression profiles associated with CD.
Project description:There is a need for reliable prognostic markers that can guide therapeutic intervention in Crohn’s disease (CD). We examined whether different behavioral phenotypes in CD can be classified based on colonic miRNA or mRNA expression and if miRNAs have prognostic utility for CD. We perform high-throughput sequencing of small RNA and mRNA isolated from colon tissue from CD patients and non-IBD (NIBD) controls. To identify miRNA and genes associated with specific behavioral phenotypes of CD, patients were stratified according to disease behavior (non-stricturing, non-penetrating; stricturing; penetrating) and compared miRNA profiles in each class with those of the NIBD group. Using a novel statistical simulation approach applied to colonic RNA-seq data for CD patients and NIBD controls, we identify at drivers of gene expression profiles associated with CD.
Project description:This is a prospective-retrospective study to determine if the expression of the miRNA’s miR-31-3p and miR-31-5p are prognostic of patient outcomes or predictive of the benefit from anti-EGFR therapy in stage III Colon Cancer. The present study will utilize FFPE tumor samples collected from patients enrolled in the PETACC-8 study conducted by the Fédération Francophone de Cancérologie Digestive (FFCD). This phase 3 clinical trial prospectively randomized fully resected stage III colon cancer patients to receive adjuvant treatment with either FOLFOX-4 plus cetuximab or FLOFOX-4 alone.
Project description:The course of Crohn's disease (CD) is heterogeneous, confounding effective personalized therapy. A previous analysis of differences in gene expression between patients with versus without CD groups revealed 2 subsets of patients with CD -- a group characterized by genes more highly expressed in the colon (colon-like CD) and a group with increased expression of ileum marker genes (ileum-like CD). We compared differences in microRNAs between these groups. We performed genome-wide microRNA profile analyses of colon tissues from 18 adults with CD and 12 adults without CD (controls). We performed principal component analyses to associate levels of microRNAs with CD subtypes. Colonic epithelial cells and lamina propria immune cells were isolated from intestinal tissues and levels of microRNA 31 (miR-31) were measured by real-time quantitative PCR. We validated the differential expression of miR-31 between the subtypes by measuring miR-31 levels in an independent cohort of 32 adult patients with CD and 23 controls. We generated epithelial colonoid cultures from controls and patients with CD, and measured levels of miR-31 in crypts. We performed genome-wide microRNA profile analyses of formalin-fixed paraffin-embedded colon and ileum biopsies from 76 treatment-naive pediatric patients with CD and 51 controls (234 samples) and collected data on disease features and outcomes. In comparing miRNA expression profiles between 9 patients with colon-like CD and 9 patients with ileum-like CD, we identified 19 miRNAs with significant differences in levels. We observed a 13.5-fold difference in level of miR-31-5p between tissues from patients with colon-like vs. ileum-like CD (Padj = 1.43 x 10-18). Principal component analysis found miR-31 to be the top contributor to the variance observed. Levels of miR-31 were increased 60-fold in tissues from patients with ileum-like CD compared with controls (Padj = 2.59 × 10-51). We validated the differential expression of miR-31 between the subtypes in the independent set of tissues. Colonoids derived from patients with CD had significantly higher levels of miR-31 than colonoids derived from control tissues (day 2 P=.041 and day 6 P=.0095). Levels of miR-31 were significantly increased in colon tissues from pediatric patients with CD compared with controls (~7.8-fold, P=4.64 ×10-7) and in ileum tissues from patients with CD patients vs. controls (~1.5-fold, P=9.97 × 10-7). A high level of miR-31 in index biopsies from pediatric patients with only inflammation and no other complications at time of diagnosis associated with development of fibrostenotic ileal CD. We identified differences in miR-31 levels in colon tissues from adult and pediatric patients with CD compared with controls, and in patients with ileum-like CD compared with colon-like CD. Further studies are needed to determine the mechanisms by which miR-31 might contribute to pathogenesis of this subtype of CD, or affect response to therapy.