Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.
Project description:Rhizoctonia solani Kühn is a soilborne basidiomycetous fungus that causes significant damage to many economically important crops. R. solani isolates are classified into 13 Anastomosis Groups (AGs) with interspecific subgroups having distinctive morphology, pathogenicity and wide host range. However, the genetic factors that drive the unique fungal pathology are still not well characterized due to the limited number of available annotated genomes. Therefore, we performed genome sequencing, assembly, annotation and functional analysis of 13 R. solani isolates covering 7 AGs and selected subgroups (AG1-IA, AG1-IB, AG1-IC, AG2-2IIIB, AG3-PT, AG3-TB, AG4-HG-I, AG5, AG6, and AG8). Here, we report a pangenome comparative analysis of 13 R. solani isolates covering important groups to elucidate unique and common attributes associated with each isolate, including molecular factors potentially involved in determining AG-specific host preference. Finally, we present the largest repertoire of annotated R. solani genomes, compiled as a comprehensive and user-friendly database, viz. RsolaniDB. Since 7 genomes are reported for the first time, the database stands as a valuable platform for formulating new hypotheses by hosting annotated genomes, with tools for functional enrichment, orthologs and sequence analysis, currently not available with other accessible state-of-the-art platforms hosting Rhizoctonia genome sequences.
Project description:a chromosome-level nuclear genome and organelle genomes of the alpine snow alga Chloromonas typhlos were sequenced and assembled by integrating short- and long-read sequencing and proteogenomic strategy
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:ChIP peaks were identified in both the human and viral genomes (genome assembly GRCh37 (hg19) and Epstein-Barr virus, Human Herpesvirus 4; GenBank accession KF717093.1).
Project description:Sequence overlap between two genes is common across all genomes, with viruses having particularly high proportions of these gene overlaps. The natural biological function and effects on fitness of gene overlaps are not fully understood and their effects on gene cluster and genome-level refactoring are unknown.The model bacteriophage φX174 genome displays complex sequence architecture in which ~26% of nucleotides are involved in encoding more than one gene. In this study we use an engineered φX174 phage containing a genome with all gene overlaps removed.
Here we have temporally measured the proteome of a synthetically engineered and wild-type φX174 during infection. We find that almost half of all phage proteins (5/11) have abnormal expression profiles after genome modularisation.
Project description:Many crop species have complex genomes, making the conventional pathway to associating molecular markers with trait variation, which includes genome sequencing, both expensive and time-consuming. We used a streamlined approach to rapidly develop a genomics platform for hexaploid wheat based on the inferred order of expressed sequences. This involved assembly of the transcriptomes for the progenitor genomes of bread wheat, the development of a genetic linkage map comprising 9495 mapped transcriptome-based SNP markers, use of this map to rearrange the genome sequence of Brachypodium distachyon into pseudomolecules representative of the genome organization of wheat and sequence similarity-based mapping onto this resource of the transcriptome assemblies. To demonstrate that this approximation of gene order in wheat is appropriate to underpin association genetics analysis, we undertook Associative Transcriptomics for straw biomass traits, identifying associations and even candidate genes for height, weight and width.
Project description:Custom exon aCGH analysis of copy number across the genomes of 16 horse breeds Two-condition experiment, All breed samples were compared to a single Thoroughbred reference, Reference was then compared to Twilight (DNA from horse used for reference genome assembly)
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.