Project description:Analysis of leaves of wild-type and rice COI mutants treated with methyl jasmonate (MeJA). Results provide the role of rice COI on response to jasmonic acid.
Project description:Aim: To improve risk stratification in patients with stable coronary artery disease (CAD), we aimed to identify genes in monocytes predictive of new ischemic events in patients with CAD and determine to what extent expression of these transcripts resembles expression in acute myocardial infarction (AMI). Results: COX10 and ZNF484 distinguished between AMI and the whole group of stable CAD patients with an accuracy of 90%. COX10 and ZNF484 together with MT-COI and WNK1 distinguished AMI patients from stable CAD patients with and without a new event with a sensitivity of 89% and a specificity of 98%. MT-COI and COX10 increased the accuracy for separating stable CAD patients with and without a new coronary event from 68 to 80% in addition to age, gender, BMI, diabetes, lipids, blood pressure and hs-CRP. Interestingly, expression of MT-COI, COX10 and WNK1 (but not ZNF484) in PBMCs paired with that in monocytes; COX10 in whole blood was similar to that in monocytes. Conclusions: This work showed that COX10 and ZNF484, eventually combined with MT-COI and WNK1 have the potential to accurately discriminate between AMI and stable CAD patients, and may improve the risk assessment of stable CAD patients.
Project description:Detecting strain-specific barcodes with mass spectrometry can facilitate the screening of genetically engineered bacterial libraries. Here, we introduce intact protein barcoding, a method to measure protein-based library barcodes and metabolites using flow-injection mass spectrometry (FI-MS). Protein barcodes are based on ubiquitin with N-terminal tags of six amino acids. We demonstrate that FI-MS detects intact ubiquitin proteins and identifies the mass of N-terminal barcodes. In the same analysis, we measured relative concentrations of primary metabolites. We constructed 6 ubiquitin-barcoded CRISPRi strains targeting metabolic enzymes, and analyzed their metabolic profiles and ubiquitin barcodes. FI-MS detected barcodes and distinct metabolome changes in CRISPRi-targeted pathways. We demonstrate the scalability of intact protein barcoding by measuring 132 ubiquitin barcodes in microtiter plates. These results show that intact protein barcoding enables fast and simultaneous detection of library barcodes and intracellular metabolites, opening up new possibilities for mass spectrometry-based barcoding.
Project description:LNPs have been demonstrated to hold great promise for the clinical advancement of RNA therapeutics. Continued exploration of LNPs for application in new disease areas requires identification and optimisation of leads in a high throughput way. Currently available high throughput in vivo screening platforms are well suited to screen for cellular uptake but less so for functional cargo delivery. We report on a platform which measures functional delivery of LNPs using unique peptide ‘barcodes’. We describe the design and selection of the peptide barcodes and the evaluation of these for the screening of LNPs. We show that proteomic analysis of peptide barcodes correlates with quantification and efficacy of barcoded reporter proteins both in vitro and in vivo and, that the ranking of selected LNPs using peptide barcodes in a pool correlates with ranking using alternative methods in groups of animals treated with individual LNPs. We show that this system is sensitive, selective, and capable of reducing the size of an in vivo study by screening up to 10 unique formulations in a single pool, thus accelerating the discovery of new technologies for mRNA delivery.
Project description:Coilin is a scaffold protein essential for the structural integrity of Cajal Bodies, which are non-membranous nuclear organelles that are thought to facilitate assembly and maturation of nuclear RNPs, including spliceosomal snRNPs. To investigate further coilin’s functions in plant cells, and to identify proteins that may functionally interact with coilin, we performed a genetic suppressor screen in Arabidopsis thaliana using a coilin (coi) mutant displaying altered splicing of a GFP pre-mRNA. The modified splicing pattern results in a ‘hyper-GFP’ phenotype in young coi seedlings relative to the intermediate level of GFP in wild-type seedlings. Additionally, in newly emerging leaves of older coi seedlings, the GFP gene frequently undergoes abrupt siRNA-associated posttranscriptional gene silencing that persists during growth. In the suppressor screen, we searched for mutations that subdue one or both of these GFP phenotypes and identified several understudied factors in plants: WRAP53, a putative Cajal body protein; SMU2, a predicted splicing-related factor; and ZC3HC1, an uncharacterized zinc finger protein. All three mutations return the hyper-GFP phenotype of the coi mutant to approximately the intermediate wild-type level. The zc3hc1 mutations in particular induce premature and more extensive posttranscriptional gene silencing similar to mutations in SOP1 and DCL4, which are known modifiers of posttranscriptional gene silencing. Candidate coilin-interacting proteins identified by immunoprecipitation-mass spectrometry include many splicing-related factors, nucleolar proteins, and mRNA export factors. Our results demonstrate the usefulness of the coi mutant to identify new modifiers of alternative splicing and posttranscriptional gene silencing, and suggest diverse roles for coilin in plant cells.