Project description:Bioavailability of electron acceptors is probably the most limiting factor in the restoration of anoxic, contaminated environments. The oxidation of contaminants such as aromatic hydrocarbons, particularly in aquifers, often depends on the reduction of ferric iron or sulphate. We have previously detected a highly active fringe zone beneath a toluene plume at a tar-oil contaminated aquifer in Germany, where a specialized community of contaminant degraders co-dominated by Desulfobulbaceae and Geobacteraceae had established. Although on-site geochemistry links degradation to sulphidogenic processes, dominating catabolic (benzylsuccinate synthase alpha-subunit, bssA) genes detected in situ appeared more related to those of Geobacter spp. Therefore, a stable isotope probing (SIP) incubation of sediment samples with 13C7-toluene and comparative electron acceptor amendment was performed. We introduce pyrosequencing of templates from SIP microcosms as a powerful new strategy in SIP gradient interpretation (Pyro-SIP). Our results reveal the central role of Desulfobulbaceae for sulphidogenic toluene degradation in situ, and affiliate the detected bssA genes to this lineage. This, and the absence of 13C-labelled DNA of Geobacter spp. in SIP gradients preclude their relevance as toluene degraders in situ. In contrast, Betaproteobacteria related to Georgfuchsia spp. became labelled under iron-reducing conditions. Furthermore, secondary toluene degraders belonging to the Peptococcaceae detected in both treatments suggest the possibility of functional redundancy amongst anaerobic toluene degraders on site. 2 samples examined from the different electron-acceptors (sulphate or ferric iron) incubates at the time point of maximal toluene degradation.
Project description:We investigated a contaminant-degrading microbial community by sequencing total RNA (without rRNA depletion) from microcosms containing sediment from a hypoxic contaminated aquifer fed with isotopically labeled toluene.
Project description:Bioavailability of electron acceptors is probably the most limiting factor in the restoration of anoxic, contaminated environments. The oxidation of contaminants such as aromatic hydrocarbons, particularly in aquifers, often depends on the reduction of ferric iron or sulphate. We have previously detected a highly active fringe zone beneath a toluene plume at a tar-oil contaminated aquifer in Germany, where a specialized community of contaminant degraders co-dominated by Desulfobulbaceae and Geobacteraceae had established. Although on-site geochemistry links degradation to sulphidogenic processes, dominating catabolic (benzylsuccinate synthase alpha-subunit, bssA) genes detected in situ appeared more related to those of Geobacter spp. Therefore, a stable isotope probing (SIP) incubation of sediment samples with 13C7-toluene and comparative electron acceptor amendment was performed. We introduce pyrosequencing of templates from SIP microcosms as a powerful new strategy in SIP gradient interpretation (Pyro-SIP). Our results reveal the central role of Desulfobulbaceae for sulphidogenic toluene degradation in situ, and affiliate the detected bssA genes to this lineage. This, and the absence of 13C-labelled DNA of Geobacter spp. in SIP gradients preclude their relevance as toluene degraders in situ. In contrast, Betaproteobacteria related to Georgfuchsia spp. became labelled under iron-reducing conditions. Furthermore, secondary toluene degraders belonging to the Peptococcaceae detected in both treatments suggest the possibility of functional redundancy amongst anaerobic toluene degraders on site.
Project description:We demonstrate the feasibility of total RNA-SIP in experiments where microbes from a hydrocarbon-contaminated aquifer were studied in microcosms with 13C-labelled-toluene to understand their adaptation to the simultaneous availability of low levels of different electron acceptors. SIP successfully resolved the involvement of microaerobic vs. aerobic and anaerobic populations. Under microoxic, nitrate-amended conditions hydrocarbon degradation was actually stimulated, but transcripts of denitrification showed no signs of 13C-labelling. The expression of distinct oxygenase-based catabolic pathways for toluene degradation was clearly apparent in 13C-labelled mRNA. We discuss how these direct insights into the gene expression and adaptation mechanisms within complex degrader communities can guide more integrated approaches in monitoring and restoration of contaminated sites.
Project description:Investigation of the gene expression responses of Candidatus Pelagibacter ubique cultures to iron limitation in natural seawater media supplemented with a siderophore to chelate iron. Quantitative peptide mass spectrometry revealed that sfuC protein abundance increased 27-fold, despite an average decrease of 59% across the global proteome.