Project description:<p>We generated primary cultures from mechanically isolated kidney glomeruli (filtration unit of the nephron) which are composed of podocytes and mesangial cells. In parallel, we generated primary kidney cortex tubule cell cultures, which are composed primarily of proximal tubule cells. Early passage cultures of these two cell types were subjected to chromatin accessibility profiling (DNase-Seq) and gene expression profiling (RNA-Seq). We found thousands of dynamically regulated enhancers in both cell types that potentially regulate nearby and distal target genes that are differentially expressed. These data will be useful for understanding the epigenomic regulation of gene transcription in key kidney cell types.</p>
Project description:Kilian2024 - Immune cell dynamics in Cue-Induced Extended Human Colitis Model
Single-cell technologies such as scRNA-seq and flow cytometry provide critical insights into immune cell behavior in inflammatory bowel disease (IBD). However, integrating these datasets into computational models for dynamic analysis remains challenging. Here, Kilian et al., (2024) developed a deterministic ODE-based model that incorporates these technologies to study immune cell population changes in murine colitis. The model parameters were optimized to fit experimental data, ensuring an accurate representation of immune cell behavior over time. It was then validated by comparing simulations with experimental data using Pearson’s correlation and further tested on independent datasets to confirm its robustness. Additionally, the model was applied to clinical bulk RNA-seq data from human IBD patients, providing valuable insights into immune system dynamics and potential therapeutic strategies.
Figure 4c, obtained from the simulation of human colitis model is highlighted here.
This model is described in the article:
Kilian, C., Ulrich, H., Zouboulis, V.A. et al. Longitudinal single-cell data informs deterministic modelling of inflammatory bowel disease. npj Syst Biol Appl 10, 69 (2024). https://doi.org/10.1038/s41540-024-00395-9
Abstract:
Single-cell-based methods such as flow cytometry or single-cell mRNA sequencing (scRNA-seq) allow deep molecular and cellular profiling of immunological processes. Despite their high throughput, however, these measurements represent only a snapshot in time. Here, we explore how longitudinal single-cell-based datasets can be used for deterministic ordinary differential equation (ODE)-based modelling to mechanistically describe immune dynamics. We derived longitudinal changes in cell numbers of colonic cell types during inflammatory bowel disease (IBD) from flow cytometry and scRNA-seq data of murine colitis using ODE-based models. Our mathematical model generalised well across different protocols and experimental techniques, and we hypothesised that the estimated model parameters reflect biological processes. We validated this prediction of cellular turnover rates with KI-67 staining and with gene expression information from the scRNA-seq data not used for model fitting. Finally, we tested the translational relevance of the mathematical model by deconvolution of longitudinal bulk mRNA-sequencing data from a cohort of human IBD patients treated with olamkicept. We found that neutrophil depletion may contribute to IBD patients entering remission. The predictive power of IBD deterministic modelling highlights its potential to advance our understanding of immune dynamics in health and disease.
This model was curated during the Hackathon hosted by BioMed X GmbH in 2024.
Project description:<p>The human neocortex is created from diverse intermixed progenitors in the prenatal germinal zones. These progenitors have been difficult to characterize since progenitors - particularly radial glia (RG) - are rare, and are defined by a combination of intracellular markers, position and morphology. To circumvent these problems we developed a method called FRISCR (Fixed and Recovered Intact Single Cell RNA) for transcriptome profiling of individual fixed, stained and sorted cells. We developed and validated FRISCR on human embryonic stem cells. We then profiled primary human RG (96 - 132 days post conception) that constitute only 1% of the mid-gestation cortex. These RG could be classified into ventricular zone-enriched RG (vRG) that express ANXA1 and CRYAB, and outer subventricular zone-localized RG (oRG) that express HOPX. Our study identifies the first markers and molecular profiles of vRG and oRG cells, and provides an essential step for understanding molecular networks driving the lineage of human neocortical progenitors.</p> <p><i>Reprinted from Thomsen et. al. Nature Methods (2015), with permission from Nature Publishing.</i></p> <p>Human embryonic stem cell data may be obtained through NCBI's GEO database, using accession number <a href="http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71858">GSE71858</a>. Raw data from one human sample that was not consented to be released to dbGaP may be obtained directly from the authors of Thomsen et. al., 2015.</p>
Project description:<p>During development of the human brain, multiple cell types with diverse regional identities are generated. Here we report a system to generate early human brain forebrain and mid/hindbrain cell types from human embryonic stem cells (hESCs), and infer and experimentally confirm a lineage tree for the generation of these types based on single-cell RNA-Seq analysis. We engineered <i>SOX2<sup>Cit/+</sup></i> and <i>DCX<sup>Cit/Y</sup></i> hESC lines to target progenitors and neurons throughout neural differentiation for single-cell transcriptomic profiling, then identified discrete cell types consisting of both rostral (cortical) and caudal (mid/hindbrain) identities. Direct comparison of the cell types were made to primary tissues using gene expression atlases and fetal human brain single-cell gene expression data, and this established that the cell types resembled early human brain cell types, including preplate cells. From the single-cell transcriptomic data a Bayesian algorithm generated a unified lineage tree, and predicted novel regulatory transcription factors. The lineage tree highlighted a prominent bifurcation between cortical and mid/hindbrain cell types, confirmed by clonal analysis experiments. We demonstrated that cell types from either branch could preferentially be generated by manipulation of the canonical Wnt/beta-catenin pathway. In summary, we present an experimentally validated lineage tree that encompasses multiple brain regions, and our work sheds light on the molecular regulation of region-specific neural lineages during human brain development.</p>
Project description:To characterize the cellular diversity in the human kidney cortical nephrogenic niche we dissociated cells from the cortex and performed 10X Genomics single-cell RNA sequencing.