Project description:<p>We generated primary cultures from mechanically isolated kidney glomeruli (filtration unit of the nephron) which are composed of podocytes and mesangial cells. In parallel, we generated primary kidney cortex tubule cell cultures, which are composed primarily of proximal tubule cells. Early passage cultures of these two cell types were subjected to chromatin accessibility profiling (DNase-Seq) and gene expression profiling (RNA-Seq). We found thousands of dynamically regulated enhancers in both cell types that potentially regulate nearby and distal target genes that are differentially expressed. These data will be useful for understanding the epigenomic regulation of gene transcription in key kidney cell types.</p>
Project description:<p>The human neocortex is created from diverse intermixed progenitors in the prenatal germinal zones. These progenitors have been difficult to characterize since progenitors - particularly radial glia (RG) - are rare, and are defined by a combination of intracellular markers, position and morphology. To circumvent these problems we developed a method called FRISCR (Fixed and Recovered Intact Single Cell RNA) for transcriptome profiling of individual fixed, stained and sorted cells. We developed and validated FRISCR on human embryonic stem cells. We then profiled primary human RG (96 - 132 days post conception) that constitute only 1% of the mid-gestation cortex. These RG could be classified into ventricular zone-enriched RG (vRG) that express ANXA1 and CRYAB, and outer subventricular zone-localized RG (oRG) that express HOPX. Our study identifies the first markers and molecular profiles of vRG and oRG cells, and provides an essential step for understanding molecular networks driving the lineage of human neocortical progenitors.</p> <p><i>Reprinted from Thomsen et. al. Nature Methods (2015), with permission from Nature Publishing.</i></p> <p>Human embryonic stem cell data may be obtained through NCBI's GEO database, using accession number <a href="http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71858">GSE71858</a>. Raw data from one human sample that was not consented to be released to dbGaP may be obtained directly from the authors of Thomsen et. al., 2015.</p>
Project description:<p>During development of the human brain, multiple cell types with diverse regional identities are generated. Here we report a system to generate early human brain forebrain and mid/hindbrain cell types from human embryonic stem cells (hESCs), and infer and experimentally confirm a lineage tree for the generation of these types based on single-cell RNA-Seq analysis. We engineered <i>SOX2<sup>Cit/+</sup></i> and <i>DCX<sup>Cit/Y</sup></i> hESC lines to target progenitors and neurons throughout neural differentiation for single-cell transcriptomic profiling, then identified discrete cell types consisting of both rostral (cortical) and caudal (mid/hindbrain) identities. Direct comparison of the cell types were made to primary tissues using gene expression atlases and fetal human brain single-cell gene expression data, and this established that the cell types resembled early human brain cell types, including preplate cells. From the single-cell transcriptomic data a Bayesian algorithm generated a unified lineage tree, and predicted novel regulatory transcription factors. The lineage tree highlighted a prominent bifurcation between cortical and mid/hindbrain cell types, confirmed by clonal analysis experiments. We demonstrated that cell types from either branch could preferentially be generated by manipulation of the canonical Wnt/beta-catenin pathway. In summary, we present an experimentally validated lineage tree that encompasses multiple brain regions, and our work sheds light on the molecular regulation of region-specific neural lineages during human brain development.</p>
Project description:To characterize the cellular diversity in the human kidney cortical nephrogenic niche we dissociated cells from the cortex and performed 10X Genomics single-cell RNA sequencing.
Project description:To characterize the cellular diversity in the human kidney cortical nephrogenic niche we dissociated cells from the cortex and performed 10X Genomics single-cell RNA sequencing.