Project description:As a type of secreted membrane vesicle, exosomes are emerging as an important mode of cell-to-cell communication. The objective of this study was to compare the abundance of mRNA and miRNA present in the parental B16F0 cell to mRNA and miRNA present in exosomes isolated from B16F0 conditioned media. Identifying local mechanisms of immunosuppression is a key barrier for expanding the clinical benefit of cancer immunotherapy. While exosomes are emerging as a new mode of intercellular communication, their role in establishing a malignant tissue niche remains unclear. Similar to the sculpting of tumor antigens during oncogenesis, a related hypothesis is that proteins secreted by malignant cells are shaped by somatic evolution. To test this hypothesis, we characterized the biological influence of tumor-derived exosomes on immune cell function.
Project description:As a type of secreted membrane vesicle, exosomes are emerging as an important mode of cell-to-cell communication. The objective of this study was to compare the abundance of transcripts present in the parental B16F0 cell to transcripts present in exosomes isolated from B16F0 conditioned media. Identifying local mechanisms of immunosuppression is a key barrier for expanding the clinical benefit of cancer immunotherapy. While exosomes are emerging as a new mode of intercellular communication, their role in establishing a malignant tissue niche remains unclear. Similar to the sculpting of tumor antigens during oncogenesis, a related hypothesis is that proteins secreted by malignant cells are shaped by somatic evolution. To test this hypothesis, we characterized the biological influence of tumor-derived exosomes on immune cell function. In particular, we analyzed exosomes from three melanoma models: B16F0, a non-immunogenic model of malignant melanoma; Cloudman S91, a model of immunogenic melanoma; and Melan-A, an immortalized melanocyte cell line. Using electron microscopy, exosomes derived from all three cell lines were morphologically similar. The exosomes contained receptors derived from the parent cell as demonstrated by IL12RB2 expression on B16F0 exosomes and intact mRNAs. Furthermore, transcript profiling of B16F0 exosomes and cells suggested that exosomal mRNA is enriched for mRNAs that target immune-related pathways, including Ptpn11 that inhibited T cell proliferation and Dnmt3a that inhibited T cell production of IFN-gamma. Functionally, B16F0 exosomes dose-dependently suppressed cell proliferation and the expression of IL12RB2 in primary CD8+ T cells. In contrast, Cloudman S91 exosomes promoted T cell proliferation and Melan-A exosomes had a negligible effect on primary CD8+ T cells. Collectively, the results are consistent with somatic editing of exosomal payloads and suggest that exosomes establish a density-dependent field effect by altering the activity of immune cells that enter the tumor microenvironment.
Project description:While recent clinical studies demonstrate the promise of cancer immunotherapy, a barrier for broadening the clinical benefit is identifying how tumors locally suppress cytotoxic immunity. As an emerging mode of intercellular communication, exosomes secreted by malignant cells can deliver a complex payload of coding and non-coding RNA to cells within the tumor microenvironment. Here, we quantified the RNA payload within tumor-derived exosomes and the resulting dynamic transcriptomic response to cytotoxic T cells upon exosome delivery to better understand how tumor-derived exosomes can alter immune cell function. Exosomes derived from B16F0 melanoma cells were enriched for a subset of coding and non-coding RNAs that did not reflect the abundance in the parental cell. Upon exosome delivery, RNAseq revealed the dynamic changes in the transcriptome of CTLL2 cytotoxic T cells. In analyzing transiently co-expressed gene clusters, pathway enrichment suggested that the B16F0 exosomal payload altered mitochondrial respiration, which was confirmed independently, and upregulated genes associated with the Notch signaling pathway. Interestingly, exosomal miRNA appeared to have no systematic effect on downregulating target mRNA levels.