Project description:Porphyromonas gingivalis and Treponema denticola are periodontalpathogens that are associated with the severity and progression of periodontal diseases. This study investigates the gene expression of Porphyromonas gingivalis during co-culture with Treponema denticola
Project description:Porphyromonas gingivalis and Treponema denticola are periodontalpathogens that are associated with the severity and progression of periodontal diseases. this study investigates the gene expression of Treponema denticola during co-culture with Porphyromonas gingivalis.
Project description:Treponema denticola is a major pathogen in periodontal disease, frequently isolated from lesions of chronic periodontitis. The ability to adopt its environment is believed to be important for T. denticola in colonizing and proliferating in the gingival crevice. T. denticola use serum as a major nutrient source in the gingival crevices, suggesting that this microorganism utilize serum components to proliferate in gingival crevice. The purpose of this study was to identify T. denticola serum utilization genes. Precultured T. denticola were suspended in tryptone-yeast extract-gelatin-volatile fatty acids medium containing 0, 1 and 10% serum, and incubated anaerobically for 17 h. Total RNA was isolated and T. denticola gene expression was compared by microarray and reverse transcription-polymerase chain reaction. In serum-depleted conditions, the expression of a potential hydroxylamine reductase, several ABC transporters, and phosphoenolpyruvate synthase were increased, while methyl-accepting chemotaxis proteins and a transcriptional regulator were decreased. The results suggest that T. denticola may uptake serum components via ABC transporters. Decreased dmcA expression with decreased serum concentration suggests its involvement in chemotaxis toward serum-rich environments.
Project description:There is growing evidence that a number of oral Treponema species, in particular Treponema denticola, are associated with the progression of human periodontal disease. The major sheath (or surface) protein (Msp) of T. denticola is implicated in adhesion of bacteria to host cells and tissue proteins and is likely to be an important virulence factor. However, the binding regions of the Msp are not known. We have purified from Escherichia coli recombinant Msp (rMsp) polypeptides corresponding to the following: full-length Msp (rMsp) minus 13 N-terminal amino acid (aa) residues, an amino-terminal fragment (rN-Msp, 189 aa residues), a 57-aa residue segment from the central region (rV-Msp), and a C-terminal fragment (rC-Msp, 272 aa residues). rMsp (530 aa residues) bound to immobilized fibronectin, keratin, laminin, collagen type I, fibrinogen, hyaluronic acid, and heparin. The N- and V-region polypeptides, but not rC-Msp, also bound to these substrates. Binding of rMsp to fibronectin was targeted to the N-terminal heparin I/fibrin I domain. Antibodies to the N-region or V-region polypeptides, but not antibodies to the rC-Msp fragment, blocked adhesion of T. denticola ATCC 35405 cells to a range of host protein molecules. These results suggest that the N-terminal half of Msp carries epitopes that are surface exposed and that are involved in mediating adhesion. Binding of rMsp onto the cell surface of low-level fibronectin-binding Treponema isolates conferred a 10-fold increase in fibronectin binding. This confirms that Msp functions autonomously as an adhesin and raises the possibility that phenotypic complementation of virulence functions might occur within mixed populations of Treponema species.
Project description:Background: Treponema denticola is strongly associated with the development of periodontal disease. Both synergistic and antagonistic effects are observed among bacterial species in the process of biofilm formation. Bacteriocin-related genes have not yet been fully characterized in periodontopathic bacteria. The aim of this study was to detect and characterize bacteriocin-associated proteins in T. denticola. Methods: The whole genome sequence of T. denticola ATCC 35405 was screened with a Streptococcus mutans bacteriocin immunity protein (ImmA/Bip) sequence. The prevalence of homologous genes in T. denticola strains was then investigated by Southern blotting. Expression of the genes was evaluated by qRT-PCR. Results: In the genome sequence of T. denticola, an amino acid sequence coded by open reading frame TDE_0719 showed 26% identity with the S. mutans ImmA. Furthermore, two protein sequences coded by TDE_0425 and TDE_2431 in T. denticola ATCC 35405 showed ~40% identity with that coded by TDE0719. Therefore, TDE_0425, TDE_0719, and TDE_2431 were designated as tepA1, A2, and A3, respectively. Open reading frames showing similarity to the HlyD family of secretion proteins were detected downstream of tepA1, A2, and A3. They were designated as tepB1, B2, and B3, respectively. A gene harboring a bacteriocin-like signal sequence was detected upstream of tepA1. The prevalence of tepA1 and A2 differed among Treponema species. Susceptibility to chloramphenicol and ofloxiacin was slightly decreased in a tepA2 mutant while that to kanamycin was increased. Expression of tepA3-B3 was increased in the tepA2 mutant. Conclusion: These results indicate that T. denticola ATCC 35405 has three potential bacteriocin export proteins and that the presence of these genes differs among the Treponema strains. These proteins may be involved in resistance to chloramphenicol.