Project description:BackgroundTeicoplanin is a glycopeptide antibiotic used clinically in Europe and in Japan for the treatment of multi-resistant Gram-positive infections. It is produced by fermenting Actinoplanes teichomyceticus. The pharmaceutically active principle is teicoplanin A2, a complex of compounds designated T-A2-1-A2-5 differing in the length and branching of the fatty acid moiety linked to the glucosamine residue on the heptapeptide scaffold. According to European and Japanese Pharmacopoeia, components of the drug must be reproduced in fixed amounts to be authorized for clinical use.ResultsWe report our studies on optimizing the fermentation process to produce teicoplanin A2 in A. teichomyceticus ATCC 31121. Robustness of the process was assessed on scales from a miniaturized deep-well microtiter system to flasks and 3-L bioreactor fermenters. The production of individual factors T-A2-1-A2-5 was modulated by adding suitable precursors to the cultivation medium. Specific production of T-A2-1, characterized by a linear C10:1 acyl moiety, is enhanced by adding methyl linoleate, trilinoleate, and crude oils such as corn and cottonseed oils. Accumulation of T-A2-3, characterized by a linear C10:0 acyl chain, is stimulated by adding methyl oleate, trioleate, and oils such as olive and lard oils. Percentages of T-A2-2, T-A2-4, and, T-A2-5 bearing the iso-C10:0, anteiso-C11:0, and iso-C11:0 acyl moieties, respectively, are significantly increased by adding precursor amino acids L-valine, L-isoleucine, and L-leucine. Along with the stimulatory effect on specific complex components, fatty acid esters, oils, and amino acids (with the exception of L-valine) inhibit total antibiotic productivity overall. By adding industrial oils to medium containing L-valine the total production is comparable, giving unusual complex compositions.ConclusionsSince the cost and the quality of teicoplanin production depend mainly on the fermentation process, we developed a robust and scalable fermentation process by using an industrial medium in which a complex composition can be modulated by the combined addition of suitable precursors. This work was performed in the wild-type strain ATCC 31121, which has a clear genetic background. This is important for starting a rational improvement program and also helps to better control teicoplanin production during process and strain development.
Project description:Moenomycin-type antibiotics are phosphoglycolipids that are notable for their unique modes of action and have proven to be useful in animal nutrition. The gene clusters tchm from Actinoplanes teichomyceticus and moe from Streptomyces are among a limited number of known moenomycin-biosynthetic pathways. Most genes in tchm have counterparts in the moe cluster, except for tchmy and tchmz, the functions of which remain unknown. Sequence analysis indicates that TchmY belongs to the isoprenoid enzyme C2-like superfamily and may serve as a prenylcyclase. The enzyme was proposed to be involved in terminal cyclization of the moenocinyl chain in teichomycin, leading to the diumycinol chain of moenomycin isomers. Here, recombinant TchmY protein was expressed in Escherichia coli and its crystal structure was solved by SIRAS. Structural analysis and comparison with other prenylcyclases were performed. The overall fold of TchmY consists of an (α/α)6-barrel, and a potential substrate-binding pocket is found in the central chamber. These results should provide important information regarding the biosynthetic basis of moenomycin antibiotics.
Project description:We report here the draft genome sequence of Actinoplanes teichomyceticus CPCC 203265, a producer of glycopeptide antibiotic teicoplanin, which has significant inhibitory activity against multidrug-resistant Gram-positive pathogens. The draft genome size is 8 Mb, with a G+C content of 72.8%, and its sequence will facilitate the genome exploration of novel secondary metabolites.
Project description:Multicellular cooperation in actinomycetes is a division of labor-based beneficial trait where phenotypically specialized clonal subpopulations, or genetically distinct lineages, perform complementary tasks. The division of labor improves the access to nutrients and optimizes reproductive and vegetative tasks while reducing the costly production of secondary metabolites and/or of secreted enzymes. In this study, we took advantage of the possibility to isolate genetically distinct lineages deriving from the division of labor, for the isolation of heterogeneous teicoplanin producer phenotypes from Actinoplanes teichomyceticus ATCC 31121. In order to efficiently separate phenotypes and associated genomes, we produced and regenerated protoplasts. This approach turned out to be a rapid and effective strain improvement method, as it allowed the identification of those phenotypes in the population that produced higher teicoplanin amounts. Interestingly, a heterogeneous teicoplanin complex productivity pattern was also identified among the clones. This study suggests that strain improvement and strain maintenance should be integrated with the use of protoplasts as a strategy to unravel the hidden industrial potential of vegetative mycelium.