Project description:This experiment analyses the expression data of the wild type P. syringae pv. tomato DC3000 grown in the absence and in the presence of phloretin and naringenin.
Project description:This experiment analyses the expresssion data of the wild type P. syringae pv. tomato DC3000 compared with its fleQ mutant grown under two different conditions: liquid culture in minimal medium and swarming plates.
Project description:Transcription profiling of Nicotinan benthamiana in response to Pectobacterium carotovorum WPP14 and Pseudomonas syringae pv. tomato DC3000
Project description:Arabidopsis thaliana (Col-0) plants were treated with BABA and gene expression differences to control plants were monitored after dip-inoculation with Pseudomonas syringae pv tomato DC3000. Keywords: transcript profiling, response to BABA-induced priming and infection
Project description:To explore the effect of light perception on Pseudomonas syringae pv. tomato DC3000 at a global level, we carried out microarray hybridization experiments. We hybridize custom-designed microarrays (Agilent Technologies) with probes isolated from PsPto after a 10 min treatment with either 20 μE/m2s blue light, 20 μE/m2s red light, 70 μE/m2s white light, or cells kept in the darkness.
Project description:Comparative transcriptomics between prf3, Prf-SBP-FLAG complemented lines as controls and tft3 2-2 line (CRISPR/Cas9 tomato mutant line in Rio Grande-prf3 Prf-SBP-FLAG complemented background), treated with either buffer (as control) or P. syringae DC3000 6 hours post infiltration.
Project description:Pseudomonas syringae pv. tomato DC3000 (Pst) is a virulent pathogen, which causes disease on tomato and Arabidopsis. The type III secretion system (TTSS) plays a key role in pathogenesis by translocating virulence effectors from the bacteria into the plant host cell, while the phytotoxin coronatine (COR) contributes to virulence and disease symptom development. Recent studies suggest that both the TTSS and and COR are involved in the suppression of host basal defenses. However, little is known about the interplay between the host gene expression associated with basal defenses and the virulence activities of the TTSS and COR during infection. The global effects of the TTSS and COR on host gene expression associated with other host cellular processes during bacterial infection are also not well characterized. In this study, we used the Affymetrix full genome chip to determine the Arabidopsis transcriptome associated with basal defense to Pst DC3000 hrp mutants and the human pathogenic bacterium Escherichia coli O157:H7. We then used Pst DC3000 virulence mutants to characterize Arabidopsis transcriptional responses to the action of hrp-regulated virulence factors (e.g., TTSS and COR) during bacterial infection. Additionally, we used bacterial fliC mutants to assess the role of the PAMP flagellin in induction of basal defense-associated transcriptional responses. In total, our global gene expression analysis identified more than 5000 Arabidopsis genes that are reproducibly regulated more than 2-fold in three independent biological replicates of at least one type of comparison. Regulation of these genes provides a molecular signature for Arabidopsis basal defense to plant and human pathogenic bacteria, and illustrates both common and distinct global virulence effects of the TTSS, COR, and possibly other hrp-regulated virulence factors during Pst DC3000 infection. Experimenter name = William Underwood; Experimenter phone = 517-353-9182; Experimenter fax = 517-353-9168; Experimenter address = Michigan State University; Experimenter address = 222 Plant Biology Building; Experimenter address = 178 Wilson R.d. Experimenter address = East Lansing, MI; Experimenter zip/postal_code = 48824; Experimenter country = USA Experiment Overall Design: 40 samples were used in this experiment
Project description:Vesiculation is a process employed by Gram-negative bacteria to release extracellular vesicles (EVs) into the environment. Bacterial EVs contain molecular cargo from the donor bacterium and play important roles in bacterial survival and growth. Here, we describe EV production in plant-pathogenic Pseudomonas syringae pv. tomato DC3000 (Pto DC3000), the causal agent of bacterial speck disease. Cultured Pto DC3000 exhibited EV structures both on the cell surface and in the vicinity of bacterial cells, observed as outer membrane vesicle (OMV) release. We used in-solution trypsin digestion coupled to mass spectrometry to identify 369 proteins enriched in EVs recovered from cultured Pto DC3000. The predicted localization profile of EV proteins supports the production of EVs also in the form of outer-inner-membrane vesicles (OIMVs). EV production varied slightly between bacterial lifestyles and also occurred in planta. The potential contribution of EVs to Pto DC3000 plant infection was assessed using plant treatments and bioinformatic analysis of the EV-enriched proteins. While these results identify immunogenic activities of the EVs, they also point at roles for EVs in bacterial defences and nutrient acquisition by Pto DC3000.
Project description:Background: Plants attenuate their responses to a variety of bacterial and fungal pathogens, leading to higher incidences of pathogen infection at night. However, little is known about the molecular mechanism responsible for the light-induced defence response; transcriptome data would likely facilitate the elucidation of this mechanism. Results: In this study, we observed diurnal changes in tomato resistance to Pseudomonas syringae pv. tomato DC3000 (Pto DC3000), with the greatest susceptibility before midnight. Nightly light treatment, particularly red light treatment, significantly enhanced the resistance; this effect was correlated with increased salicylic acid (SA) accumulation and defence-related gene transcription. RNA-seq analysis revealed that red light induced a set of circadian rhythm-related genes involved in the phytochrome and SA-regulated resistance response. The biosynthesis and signalling pathways of multiple plant hormones (auxin, SA, jasmonate, and ethylene) were co-ordinately regulated following Pto DC3000 infection and red light, and the SA pathway was most significantly affected by red light and Pto DC3000 infection. This result indicates that SA-mediated signalling pathways are involved in red light-induced resistance to pathogens. Importantly, silencing of nonexpressor of pathogensis-related genes 1 (NPR1) partially compromised red light-induced resistance against Pto DC3000. Furthermore, sets of genes involved in redox homeostasis (respiratory burst oxidase homologue, RBOH; glutathione S-transferases, GSTs; glycosyltransferase, GTs), calcium (calmodulin, CAM; calmodulin-binding protein, CBP), and defence (polyphenol oxidase, PPO; nudix hydrolase1, NUDX1) as well as transcription factors (WRKY18, WRKY53, WRKY60, WRKY70) and cellulose synthase were differentially induced at the transcriptional level by red light in response to pathogen challenge. Conclusions: Taken together, our results suggest that there is a diurnal change in susceptibility to Pto DC3000 with greatest susceptibility in the evening. The red light induced-resistance to Pto DC3000 at night is associated with enhancement of the SA pathway, cellulose synthase, and reduced redox homeostasis.