Project description:This study utilized next generation sequencing technology (RNA-Seq and BS-Seq) to examine the transcriptome and methylome of various tissues within sorghum plants with the ultimate goal of improving the Sorghum bicolor annotation We examined the mRNA of various Sorghum bicolor (BTx623) tissues (flowers, vegitative and floral meristems, embryos, roots and shoots) and bisulfite treated DNA from two root samples
Project description:This study utilized next generation sequencing technology (RNA-Seq and BS-Seq) to examine the transcriptome and methylome of various tissues within sorghum plants with the ultimate goal of improving the Sorghum bicolor annotation
Project description:This study used with RNA-Seq to examine the tissue specific expression data within sorghum plants for improving the Sorghum bicolor gene annotation. We examined the RNA from tissues (spikelet, seed and stem) in Sorghum bicolor (BTx623).Total RNAs form each tissues were extracted using SDS/phenol method followed by LiCl purification
Project description:Parallel Analysis of RNA Ends (PARE) sequencing reads were generated to validate putative microRNAs and identify cleavage sites in Sorghum bicolor and Setaria viridis.
Project description:This experiment contains the subset of data corresponding to sorghum RNA-Seq data from experiment E-GEOD-50464 (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-50464/), which goal is to examine the transcriptome of various Sorghum bicolor (BTx623) tissues: flowers, vegetative and floral meristems, embryos, roots and shoots. Thus, we expanded the existing transcriptome atlas for sorghum by conducting RNA-Seq analysis on meristematic tissues, florets, and embryos, and these data sets have been used to improve on the existing community structural annotations.
Project description:We report transcriptome profiling of middle internode tissues from four development stages and three soil moisture readings representing progressive drought stress in grain sorghum. Sequencing of 14 libraries (two biological replicates for each stage). Each replicate yielded an average of 86 million reads per sample for developmental stages and drought stressed samples yielded an average of 74 million reads per sample .
Project description:Sorghum (Sorghum bicolor) is the fifth most important cereal crop in the world. It is an annual C4 crop having a high biomass, used widely, and has a strong resistance to stress. Obviously, there are many benefits of planting sorghum on marginal soils such as saline-alkali land.